1 |
Chan, W. W.-Y. (2006). A survey on multivariate data visualization. Department of Computer Science and Engineering. Hong Kong University of Science and Technology, 8(6):1–29
|
|
2 |
De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B., et al. (2021). Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology, 27(11):2279–2297.
|
|
3 |
de Souza, C. V. F., da Cunha Luz Barcellos, P., Crissaff, L., Cataldi, M., Miranda, F., and Lage, M. (2022). Visualizing simulation ensembles of extreme weather events. Computers & Graphics, 104:162–172.
|
|
4 |
Diehl, A., Pelorosso, L., Delrieux, C., Saulo, C., Ruiz, J., Gr ̈oller, M. E., and Bruckner, S. (2015). Visual analysis of spatio-temporal data: Applications in weather forecasting. In Computer Graphics Forum, num- ber 3 in 34, pages 381–390
|
|
5 |
Esplugues, F. B., Gramaje, M. d. C. P., and Garc ́ıa-Haro, F. J. (2013). T ́ecnicas de miner ́ıa de datos para el an ́alisis de periodos de sequ ́ıa en espa ̃na. Revista Tiempo y Clima, 5(30).
|
|
6 |
Kumar, P., Chandra, R., Bansal, C., Kalyanaraman, S., Ganu, T., and Grant, M. (2021). Micro-climate predic- tion - multi scale encoder-decoder based deep learning framework. KDD, page 3128–3138
|
|
7 |
Lu, G. Y. and Wong, D. W. (2008). An adaptive inverse-distance weighting spatial interpolation technique. Computers & geosciences, 34(9):1044–1055.
|
|
8 |
Mizutori, M. and Guha-Sapir, D. (2020). Human cost of disasters 2000-2019. Technical report, United Nations Office for Disaster Risk Reduction
|
|
9 |
Morais, L. d. and Ferreira, N. C. (2015). Banco de dados pluviom ́etricos integrados por dados do sensor trmm e estac ̧ ̃oes pluviom ́etricas no estado de goi ́as. Anais Eletr., 17.
|
|
10 |
Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., et al. (2022). Tackling climate change with machine learning. ACM Comput. Surv., 55(2).
|
|
11 |
Salas, D., Liang, X., Navarro, M., Liang, Y., and Luna, D. (2020). An open-data open-model framework for hydrological models’ integration, evaluation and application. Environ. Model. Softw., 126:104622.
|
|
12 |
Thorndahl, S. and Willems, P. (2008). Probabilistic modelling of overflow, surcharge and flooding in urban drainage using the first-order reliability method and parameterization of local rain series. Water Research, 42(1):455–466.
|
|