SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Luis Rego(gustavo.coutinho@insightlab.ufc.br)
2 Bárbara Neves Oliveira(barbaraneves@insightlab.ufc.br)
3 Lucas Gaspar(lucasperes@lia.ufc.br)
4 João Araújo Branco(joaocb@insightlab.ufc.br)
5 Jose Macêdo(jose.macedo@insightlab.ufc.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Altae-Tran, H., Ramsundar, B., Pappu, A. S., and Pande, V. (2017). Low data drug discovery with one-shot learning. ACS central science, 3(4):283–293.
2 Bao, Y., Wu, M., Chang, S., and Barzilay, R. (2019). Few-shot text classification with distributional signatures. arXiv preprint arXiv:1908.06039.
3 Chollet, F. (2021). Deep learning with Python. Simon and Schuster.
4 Dong, N. and Xing, E. P. (2018). Few-Shot Semantic Segmentation with Prototype Learning. In BMVC, volume 3.
5 Dumoulin, V. and Visin, F. (2016). A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285.
6 Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic metalearning for fast adaptation of deep networks. In International conference on machine learning, pages 1126–1135. PMLR.
7 Finn, C., Xu, K., and Levine, S. (2018). Probabilistic model-agnostic meta-learning. Advances in neural information processing systems, 31.
8 Garcia, V. and Bruna, J. (2017). Few-shot learning with graph neural networks. arXiv preprint arXiv:1711.04043.
9 Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T., Saxton, D., Shanahan, M., Teh, Y. W., Rezende, D., and Eslami, S. A. (2018). Conditional neural processes. In International Conference on Machine Learning, pages 1704– 1713. PMLR.
10 Grant, E., Finn, C., Levine, S., Darrell, T., and Griffiths, T. (2018). Recasting gradient-based meta-learning as hierarchical bayes. arXiv preprint arXiv:1801.08930.
11 Gu, J., Wang, Y., Chen, Y., Cho, K., and Li, V. O. (2018). Meta-learning for low-resource neural machine translation. arXiv preprint arXiv:1808.08437.
12 He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image Recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.
13 Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735–1780.
14 Hsu, J.-Y., Chen, Y.-J., and Lee, H.-y. (2020). Meta learning for endto-end low-resource speech recognition. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7844–7848. IEEE.
15 Huisman, M., Van Rijn, J. N., and Plaat, A. (2021). A survey of deep meta-learning. Artificial Intelligence Review, 54(6):4483–4541.
16 Kang, B., Liu, Z., Wang, X., Yu, F., Feng, J., and Darrell, T. (2019). Few-shot object detection via feature reweighting. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 8420–8429.
17 Koch, G., Zemel, R., Salakhutdinov, R., et al. (2015). Siamese neural networks for one-shot image recognition. In ICML deep learning workshop, volume 2, page 0. Lille.
18 Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and brain sciences, 40.
19 Li, Z., Zhou, F., Chen, F., and Li, H. (2017). Meta-sgd: Learning to learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835.
20 Maicas, G., Bradley, A. P., Nascimento, J. C., Reid, I., and Carneiro, G. (2018). Training medical image analysis systems like radiologists. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 546–554. Springer.
21 Mirikharaji, Z., Yan, Y., and Hamarneh, G. (2019). Learning to segment skin lesions from noisy annotations. In Domain adaptation and representation transfer and medical image learning with less labels and imperfect data, pages 207– 215. Springer.
22 Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P. (2017). A simple neural attentive meta-learner. arXiv preprint arXiv:1707.03141.
23 Munkhdalai, T. and Yu, H. (2017). Meta networks. In International Conference on Machine Learning, pages 2554–2563. PMLR.
24 Neves Oliveira, B. S., do Rêgo, L. G. C., Peres, L., da Silva, T. L. C., and de Macêdo, J. A. F. (2022a). Processamento de linguagem natural via aprendizagem profunda. Sociedade Brasileira de Computação.
25 Nichol, A. and Schulman, J. (2018). Reptile: a scalable metalearning algorithm. arXiv preprint arXiv:1803.02999, 2(3):4.
26 Panagopoulos, G., Nikolentzos, G., and Vazirgiannis, M. (2021). Transfer graph neural networks for pandemic forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 4838–4845.
27 Ravi, S. and Larochelle, H. (2017). Optimization as a model for few-shot learning. In International Conference on Learning Representations.
28 Salem, F. K. A., Al Feel, R., Elbassuoni, S., Ghannam, H., Jaber, M., and Farah, M. (2021). Meta-learning for fake news detection surrounding the syrian war. Patterns, 2(11):100369.
29 Schmidhuber, J. (1987). Evolutionary principles in self-referential learning, or on learning how to learn: the meta-meta-... hook. PhD thesis, Technische Universität München.
30 Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical networks for few-shot learning. Advances in neural information processing systems, 30.
31 Thrun, S. (1998). Lifelong learning algorithms. In Learning to learn, pages 181–209. Springer.
32 Upadhyay, R., Phlypo, R., Saini, R., and Liwicki, M. (2021). Sharing to learn and learning to share-fitting together meta-learning, multi-task learning, and transfer learning: A meta review. arXiv preprint arXiv:2111.12146.
33 Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al. (2016). Matching networks for one shot learning. Advances in neural information processing systems, 29.
34 Visca, M., Powell, R., Gao, Y., and Fallah, S. (2022). Deep metalearning energy-aware path planner for unmanned ground vehicles in unknown terrains. IEEE Access, 10:30055–30068.
35 Wang, C., Zhu, Y., Liu, H., Zang, T., Yu, J., and Tang, F. (2022). Deep meta-learning in recommendation systems: A survey. arXiv preprint arXiv:2206.04415.
36 Wang, T.-C., Liu, M.-Y., Tao, A., Liu, G., Kautz, J., and Catanzaro, B. (2019). Few-shot video-to-video synthesis. arXiv preprint arXiv:1910.12713.
37 Yoon, J., Kim, T., Dia, O., Kim, S., Bengio, Y., and Ahn, S. (2018). Bayesian model-agnostic meta-learning. Advances in neural information processing systems, 31.
38 Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., and Finn, C. (2020). Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems, 33:5824–5836.
39 Zakharov, E., Shysheya, A., Burkov, E., and Lempitsky, V. (2019). Few-shot adversarial learning of realistic neural talking head models. In Proceedings of the IEEE/CVF international conference on computer vision, pages 9459–9468.
40 Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2021). Dive into Deep Learning. arXiv preprint arXiv:2106.11342.