SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Raffael Paranhos(raffaelmp@id.uff.br)
2 Marcos Lage(mlage@ic.uff.br)
3 Daniel de Oliveira(danielcmo@ic.uff.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 [Aerts et al. 2013] Aerts, J. C., Lin, N., Botzen, W., Emanuel, K., and de Moel, H. (2013). Low-probability flood risk modeling for new york city. Risk Analysis, 33(5):772–788.
2 [Al-Ageili and Mouhoub 2022] Al-Ageili, M. and Mouhoub, M. (2022). An ontology-based information extraction system for residential land-use suitability analysis. Int. J. Softw. Eng. Knowl. Eng., 32(7):1019–1042.
3 [Bennett et al. 2011] Bennett, D. A., Tang, W., and Wang, S. (2011). Toward an understanding of provenance in complex land use dynamics. J. of Land Use Science, 6(2-3):211–230.
4 [de Oliveira et al. 2019] de Oliveira, D. et al. (2019). Data-Intensive Workflow Management: For Clouds and Data-Intensive and Scalable Computing Environments. M. & Claypool.
5 [Freire et al. 2008] Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for Computational Tasks: A Survey. Computing in Science & Engineering, 10(3):11–21
6 [Fritz et al. 2017] Fritz, S. et al. (2017). A global dataset of crowdsourced land cover and land use reference data. Scientific Data, 4(1):170075.
7 [Groth and Moreau 2013] Groth, P. and Moreau, L. (2013). W3C PROV. Available at https://www.w3.org/TR/prov-overview/.
8 [Krumm and Krumm 2019] Krumm, J. and Krumm, K. (2019). Land use inference from mobility traces. In Proc. of the 3rd ACM SIGSPATIAL, page 1–4. ACM.
9 [Ma et al. 2020] Ma, J. et al. (2020). Analyzing driving factors of land values in urban scale based on big data and non-linear machine learning techniques. Land use policy, 94:104537.
10 [Munneke 2005] Munneke, H. J. (2005). Dynamics of the urban zoning structure: An empirical investigation of zoning change. Journal of Urban Economics, 58(3):455–473.
11 [NYCDCP 2023] NYCDCP (2023). Pluto. www.nyc.gov/site/planning/ data-maps/open-data/dwn-pluto-mappluto.page. Acesso: Junho 2023.
12 [NYCDOF 2023] NYCDOF (2023). Department of finance digital tax map. http://gis.nyc.gov/taxmap/. Acessado em: Junho 2023.
13 [Yang and Wu 2021] Yang, T. and Wu, Y. (2021). Looking for datasets to open: An exploration of government officials’ information behaviors in open data policy implementation. Gov. Inf. Q., 38(2):101574.