1 |
Brown, T.B., Mann, B., Ryder, N., et al. 2020. Language Models are Few-Shot Learners. http://arxiv.org/abs/2005.14165.
|
|
2 |
Bruening, W., Giasson, B.I., Klein-Szanto, A.J.P., Lee, V.M.-Y., Trojanowski, J.Q., and Godwin, A.K.
2000. Synucleins are expressed in the majority of breast and ovarian carcinomas and in
preneoplastic lesions of the ovary. Cancer 88, 9, 2154–2163.
|
|
3 |
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. 2019. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. http://arxiv.org/abs/1810.04805.
|
|
4 |
Elnaggar, A., Essam, H., Salah-Eldin, W., Moustafa, W., Elkerdawy, M., Rochereau, C., and Rost, B.
2023. Ankh: Optimized Protein Language Model Unlocks General-Purpose Modelling.
http://arxiv.org/abs/2301.06568.
|
|
5 |
George, J.M. 2001. The synucleins. Genome Biology 3, 1, reviews3002.1.
|
|
6 |
Gupta, R. 2001. Prediction of glycosylation sites in proteomes: from post-translational modifications to
protein function.
|
|
7 |
Hart, G.W., Housley, M.P., and Slawson, C. 2007. Cycling of O-linked beta-N-acetylglucosamine on
nucleocytoplasmic proteins. Nature 446, 7139, 1017–1022.
|
|
8 |
Hartono, Hazawa, M., Lim, K.S., Dewi, F.R.P., Kobayashi, A., and Wong, R.W. 2019. Nucleoporin
Nup58 localizes to centrosomes and mid-bodies during mitosis. Cell Division 14, 1, 7.
|
|
9 |
Heinzinger, M., Weissenow, K., Gomez Sanchez, J., Henkel, A., Mirdita, M., Steinegger, M., and Rost, B.
2024. Bilingual language model for protein sequence and structure. NAR Genomics and
Bioinformatics 6, 4, lqae150.
|
|
10 |
Hou, C., Li, W., Li, Y., and Ma, J. 2025. O-GlcNAcAtlas 4.0: An Updated Protein O-GlcNAcylation
Database with Site-specific Quantification. Journal of Molecular Biology 437, 15, 169033.
|
|
11 |
Hu, F., Li, W., Li, Y., Hou, C., Ma, J., and Jia, C. 2023. O-GlcNAcPRED-DL: prediction of protein
O-GlcNAcylation sites based on an ensemble model of deep learning. Journal of Proteome
Research 23, 1, 95–106.
|
|
12 |
Khalid, A., Kaleem, A., Qazi, W., Abdullah, R., Iqtedar, M., and Naz, S. 2024. Site-specific prediction of
O-GlcNAc modification in proteins using evolutionary scale model. PLOS ONE 19, 12,
e0316215.
|
|
13 |
Lin, Z., Akin, H., Rao, R., et al. 2023. Evolutionary-scale prediction of atomic-level protein structure with
a language model. Science 379, 6637, 1123–1130.
|
|
14 |
Meng, E.C., Goddard, T.D., Pettersen, E.F., et al. 2023. UCSF ChimeraX: Tools for structure building and
analysis. Protein Science 32, 11, e4792.
|
|
15 |
Morris, R., Black, K.A., and Stollar, E.J. 2022. Uncovering protein function: from classification to
complexes. Essays in Biochemistry 66, 3, 255–285.
|
|
16 |
Pokharel, S., Pratyush, P., Ismail, H.D., Ma, J., and Kc, D.B. 2023. Integrating Embeddings from Multiple
Protein Language Models to Improve Protein O-GlcNAc Site Prediction. International Journal
of Molecular Sciences 24, 21, 16000.
|
|
17 |
Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. Improving Language Understanding by
Generative Pre-Training.
|
|
18 |
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. Language Models are
Unsupervised Multitask Learners.
|
|
19 |
Ruan, H.-B., Han, X., Li, M.-D., et al. 2012. O-GlcNAc Transferase/Host Cell Factor C1 Complex
Regulates Gluconeogenesis by Modulating PGC-1α Stability. Cell metabolism 16, 2, 226–237.
|
|
20 |
Seber, P. and Braatz, R.D. 2024. Recurrent neural network-based prediction of O-GlcNAcylation sites in
mammalian proteins. Computers & Chemical Engineering 189, 108818.
|
|
21 |
Singh, M., Bacolla, A., Chaudhary, S., et al. 2020. Histone Acetyltransferase MOF Orchestrates
Outcomes at the Crossroad of Oncogenesis, DNA Damage Response, Proliferation, and Stem
Cell Development. Molecular and Cellular Biology 40, 18, e00232-20.
|
|
22 |
Slawson, C. and Hart, G.W. 2011. O-GlcNAc signalling: implications for cancer cell biology. Nature
Reviews. Cancer 11, 9, 678–684.
|
|
23 |
Sledzieski, S., Kshirsagar, M., Baek, M., Dodhia, R., Lavista Ferres, J., and Berger, B. 2024.
Democratizing protein language models with parameter-efficient fine-tuning. Proceedings of the
National Academy of Sciences 121, 26, e2405840121.
|
|
24 |
Smet-Nocca, C., Broncel, M., Wieruszeski, J.-M., et al. 2011. Identification of O-GlcNAc sites within
peptides of the Tau protein and their impact on phosphorylation. Molecular bioSystems 7, 5,
1420–1429.
|
|
25 |
Spoel, S.H. 2018. Orchestrating the proteome with post-translational modifications. Journal of
Experimental Botany 69, 19, 4499–4503.
|
|
26 |
Stollar, E.J. and Smith, D.P. 2020. Uncovering protein structure. Essays in Biochemistry 64, 4, 649–680.
|
|
27 |
Suzek, B.E., Wang, Y., Huang, H., McGarvey, P.B., Wu, C.H., and the UniProt Consortium. 2015. UniRef
clusters: a comprehensive and scalable alternative for improving sequence similarity searches.
Bioinformatics 31, 6, 926–932.
|
|
28 |
The UniProt Consortium. 2023. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids
Research 51, D1, D523–D531.
|
|
29 |
Vaswani, A., Shazeer, N., Parmar, N., et al. 2017. Attention is All you Need. Advances in Neural
Information Processing Systems, Curran Associates, Inc.
|
|
30 |
Weissenow, K. and Rost, B. 2025. Are protein language models the new universal key? Current Opinion
in Structural Biology 91, 102997.
|
|
31 |
Yang, X. and Qian, K. 2017. Protein O-GlcNAcylation: emerging mechanisms and functions. Nature
reviews. Molecular cell biology 18, 7, 452–465.
|
|
32 |
Yang, Y., Fu, M., Li, M.-D., et al. 2020. O-GlcNAc transferase inhibits visceral fat lipolysis and promotes
diet-induced obesity. Nature Communications 11, 181.
|
|
33 |
Yang, Y.-H., Wen, R., Yang, N., Zhang, T.-N., and Liu, C.-F. 2023. Roles of protein post-translational
modifications in glucose and lipid metabolism: mechanisms and perspectives. Molecular
Medicine 29, 1, 93.
|
|
34 |
Zhang, L., Deng, T., Pan, S., et al. 2024. DeepO-GlcNAc: a web server for prediction of protein
O-GlcNAcylation sites using deep learning combined with attention mechanism. Frontiers in
Cell and Developmental Biology 12.
|
|
35 |
Zhao, W., Zhou, K., Junyi, L., et al. 2023. A Survey of Large Language Models.
|
|