SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Renan Souza(rfsouza@br.ibm.com)
2 Marta Mattoso(marta@cos.ufrj.br)
3 Patrick Valduriez(Patrick.Valduriez@inria.fr)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Atkinson, M., Gesing, S., Montagnat, J., and Taylor, I. (2017). Scientific workflows: Past, present and future. Future Generation Computer Systems, 75:216–227.
2 Camata, J. J., Silva, V., Valduriez, P., Mattoso, M., and Coutinho, A. L. G. A. (2018). In situ visualization and data analysis for turbidity currents simulation. Computers & Geosciences, 110:23–31.
3 Deelman, E., Peterka, T., Altintas, I., Carothers, C. D., Kleese van Dam, K., Moreland, K., Parashar, M., Ramakrishnan, L., Taufer, M., and Vetter, J. (2017). The future of scientific workflows. International Journal of HPC Applications, 32(1):159–175.
4 F. da Silva, R., Filgueira, R., Pietri, I., Jiang, M., Sakellariou, R., and Deelman, E. (2017). A characterization of workflow management systems for extreme-scale applications. Future Generation Computer Systems, 75:228–238.
5 Ogasawara, E., Dias, J., Oliveira, D., Porto, F., Valduriez, P., and Mattoso, M. (2011). An algebraic approach for data-centric scientific workflows. PVLDB, 4(12):1328–1339.
6 Rude, U., Willcox, K., McInnes, L. C., and Sterck, H. D. (2018). Research and education in computational science and engineering. SIAM Review, 60(3):707–754.
7 Silva, V., de Oliveira, D., Valduriez, P., and Mattoso, M. (2018a). DfAnalyzer: runtime dataflow analysis of scientific applications using provenance. PVLDB, 11(12):2082–2085.
8 Silva, V., Neves, L., Souza, R., Coutinho, A., de Oliveira, D., and Mattoso, M. (2018b). Adding domain data to code profiling tools to debug workflow parallel execution. Future Generation Computer Systems, 110:422–439.
9 Silva, V., Neves, L., Souza, R., Coutinho, A., Oliveira, D. D., and Mattoso, M. (2016). Integrating domain-data steering with code-profiling tools to debug data-intensive workflows. In Workflows in Support of Large-Scale Science (WORKS) at ACM/IEEE Supercomputing
10 Silva, V., Souza, R., Camata, J., de Oliveira, D., Valduriez, P., Coutinho, A., and Mattoso, M. (2018c). Capturing provenance for runtime data analysis in computational science and engineering applications. In International Provenance and Annotation Workshop (IPAW), pages 183–187.
11 Souza, R., Azevedo, L., Thiago, R., Soares, E., Nery, M., Netto, M., Brazil, E. V., Cerqueira, R., Valduriez, P., and Mattoso, M. (2019a). Efficient runtime capture of multiworkflow data using provenance. In IEEE e-Science, pages 1–10.
12 Atkinson, M., Gesing, S., Montagnat, J., and Taylor, I. (2017). Scientific workflows: Past, present and future. Future Generation Computer Systems, 75:216–227.
13 Souza, R. and Mattoso, M. (2018). Provenance of dynamic adaptations in user-steered dataflows. In International Provenance and Annotation Workshop (IPAW), pages 16–29.
14 Souza, R., Neves, L., Azeredo, L., Luiz, R., Tady, E., Cavalin, P., and Mattoso, M. (2018). Towards a human-in-the-loop library for tracking hyperparameter tuning in deep learning development. In Latin American Data Science (LaDaS) at VLDB.
15 Souza, R., Silva, V., Camata, J., Coutinho, A., Valduriez, P., and Mattoso, M. (2017a). Tracking of online parameter fine-tuning in scientific workflows. In Workflows in Support of Large-Scale Science (WORKS) at ACM/IEEE Supercomputing.
16 Souza, R., Silva, V., Camata, J. J., Coutinho, A., Valduriez, P., and Mattoso, M. (2019b). Keeping track of user steering actions in dynamic workflows. Future Generation Computer Systems, 99:624–643.
17 Souza, R., Silva, V., Coutinho, A., Valduriez, P., and Mattoso, M. (2016). Online input data reduction in scientific workflows. In Workflows in Support of Large-Scale Science (WORKS) at ACM/IEEE Supercomputing, pages 1–10.
18 Souza, R., Silva, V., Coutinho, A., Valduriez, P., and Mattoso, M. (2017b). Data reduction in scientific workflows using provenance monitoring and user steering. Future Generation Computer Systems, 110:481–501.
19 Souza, R., Silva, V., Lima, A. A. B., Oliveira, D., Valduriez, P., and Mattoso, M. (2021b). Distributed in-memory data management for workflow executions. PeerJCS.
20 Souza, R., Silva, V., Miranda, P., Lima, A. A. B., Valduriez, P., and Mattoso, M. (2017c). Spark scalability analysis in a scientific workflow. In SBBD, pages 288–293.
21 Souza, R., Silva, V., Oliveira, D., Valduriez, P., Lima, A. A. B., and Mattoso, M. (2015). Parallel execution of workflows driven by a distributed database management system. In ACM/IEEE Supercomputing, pages 1–3.