1 |
Bishop, C. M. (2006). Pattern recognition and machine learning. Springer google schola, 2:1122–1128. ISBN: 0387310738.
|
|
2 |
Bowler, D. E., Buyung-Ali, L., Knight, T. M., and Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3):147–155. DOI: 10.1016/j.landurbplan.2010.05.006.
|
|
3 |
Chan, F., Griffiths, J., Higgitt, D., Xu, S., Zhu, F., Tang, Y.-T., Xu, Y., and Thorne, C. (2018). “sponge city” in china—a breakthrough of planning and flood risk management in the urban context. Land Use Policy, In Press. DOI: 10.1016/j.landusepol.2018.03.005.
|
|
4 |
Depave (2025). Depave: Urban re-greening and community revitalization. https: //www.depave.org/. Accessed: 2025-07-06.
|
|
5 |
Gill, S., Handley, J., Ennos, R., and Pauleit, S. (2007). Adapting cities for climate change: The role of the green infrastructure. Built Environment, 33:115–133. DOI: 10.2148/benv.33.1.115.
|
|
6 |
Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Concepts and Techniques, 3rd edition. Morgan Kaufmann. ISBN: 978-0123814791.
|
|
7 |
Huber, M., Kumar, V., Steele-Dunne, S. C., and Rommen, B. (2023). Sentinel-1 insar coherence as an indicator of monitor farming activities. In IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023, Pasadena, CA, USA, July 16-21, 2023, pages 429–432. DOI: 10.1109/IGARSS52108.2023.10281522.
|
|
8 |
Lee, J. (2025). Estimating near-surface air temperature from satellite-derived land surface temperature using temporal deep learning: A comparative analysis. IEEE Access, 13:28935–28945. DOI: 10.1109/ACCESS.2025.3539581.
|
|
9 |
Lima, L. B., Franca Rocha, W. J., Souza, D. T., Lobao, J. S., de Santana, M. M., Cambui, E. C., and Vasconcelos, R. N. (2025). Urban quality: A remote-sensing-perspective review. Urban Science, 9(2):31. DOI: 10.3390/urbansci9020031.
|
|
10 |
Meerow, S. (2017). Spatial planning for multifunctional green infrastructure: Growing resilience in detroit. Landscape and Urban Planning, 159:62–75. DOI: 10.1016/j.landurbplan.2016.10.005.
|
|
11 |
Nguyen, K. and Park, C. J. (2025). On calibration of prompt learning using temperature scaling. IEEE Access, 13:31171–31182. DOI: 10.1109/ACCESS.2025.3538617.
|
|
12 |
Pimenow, S., Pimenowa, O., Prus, P., and Niklas, A. (2025). The impact of artificial intelligence on the sustainability of regional ecosystems: Current challenges and future prospects. Sustainability, 17(11):4795. DOI: 10.3390/su17114795.
|
|
13 |
Sentinel Hub (2025). Sentinel hub api documentation. https://www.sentinel-hub.com/develop/api/. Accessed: 2025-07-06.
|
|
14 |
Stamou, A. and Manika, S. (2013). Estimation of land surface temperature and urban patterns relationship for urban heat island studies.
|
|
15 |
Vasconcelos, F. F., Ramos, V. T., and Coutinho, F. J. (2023). Os desafios e soluções para a implementação de big data analytics em cidades inteligentes. In Simpósio Brasileiro de Banco de Dados (SBBD), pages 50–56. SBC. DOI: 10.5753/sbbd estendido.2023.233368.
|
|
16 |
Vedrí, J., Nicl`os, R., P´erez-Planells, L., Valor, E., Luna, Y., and Estrela, M. J. (2025). Empirical methods to determine surface air temperature from satelliteretrieved data. Int. J. Appl. Earth Obs. Geoinformation, 136:104380. DOI: doi.org/10.1016/j.jag.2025.104380.
|
|
17 |
Wen, Z., Zhuo, L., Gao, M., and Han, D. (2025). How can we improve data integration to enhance urban air temperature estimations? Int. J. Appl. Earth Obs. Geoinformation, 140:104599. DOI: 10.1016/j.jag.2025.104599.
|
|
18 |
Zhang, B., Xie, G., Zhang, C., and Zhang, J. (2012). The economic benefits of rainwaterrunoff reduction by urban green spaces: A case study in beijing, china. Journal of environmental management, 100:65–71. DOI: 10.1016/j.jenvman.2012.01.015.
|
|