1 |
Bansal, P. (2024). Prompt engineering importance and applicability with generative ai.Journal of Computer and Communications, 12.
|
|
2 |
Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., Edwards, H.,
Burda, Y., Joseph, N., Brockman, G., et al. (2021). Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374.
|
|
3 |
Coignion, T., Quinton, C., and Rouvoy, R. (2024). A performance study of llm-generated
code on leetcode. In Proceedings of the 28th International Conference on Evaluation
and Assessment in Software Engineering, pages 79–89.
|
|
4 |
Damke, G., Gregorini, D., and Copetti, L. (2024). Avaliac ̧ ̃ao da performance e corretude
na gerac ̧ ̃ao de c ́odigo atrav ́es de t ́ecnicas de engenharia de prompt: Um estudo comparativo. In Anais do XXI Congresso Latino-Americano de Software Livre e Tecnologias
Abertas, pages 400–403, Porto Alegre, RS, Brasil. SBC.
|
|
5 |
Deng, Y., Zhang, W., Chen, Z., and Gu, Q. (2023). Rephrase and respond: Let large language models ask better questions for themselves. arXiv preprint arXiv:2311.04205.
|
|
6 |
Devlin, J. (2018). Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805.
|
|
7 |
Dodge, Y. (2008). The concise encyclopedia of statistics. Springer Science & Business
Media.
|
|
8 |
Gouveia, T., Albuquerque, K. M. M., Oliveira, J. D., and Maciel, V. M. B. C. (2023).
C073: ferramenta para apoio ao ensino de programac ̧ ̃ao usando a metodologia de
aprendizagem baseada em problemas. Revista Principia, 60(1):70–87.
|
|
9 |
Hu, T. and Zhou, X.-H. (2024). Unveiling llm evaluation focused on metrics: Challenges
and solutions. arXiv preprint arXiv:2404.09135.
|
|
10 |
Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y. (2022). Large language
models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213.
|
|
11 |
Korzy ́nski, P., Mazurek, G., Krzypkowska, P., and Kurasi ́nski, A. (2023). Artificial intelligence prompt engineering as a new digital competence: Analysis of generative ai
technologies such as chatgpt. Entrepreneurial Business and Economics Review
|
|
12 |
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., K ̈uttler, H., Lewis,
M., Yih, W.-t., Rockt ̈aschel, T., et al. (2020). Retrieval-augmented generation for
knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems,
33:9459–9474.
|
|
13 |
Mahir, A., Shohel, M. M. C., and Sall, W. (2024). The Role of AI in Programming
Education: An Exploration of the Effectiveness of Conversational Versus Structured
Prompting, pages 319–352. Practitioner Research in College-Based Education.
|
|
14 |
Medeiros, A., Cavalcante, C., Nepomuceno, J., Lago, L., Ruberg, N., and Lifschitz, S.
(2024). Contrato360: uma aplicac ̧ ̃ao de perguntas e respostas usando modelos de
linguagem, documentos e bancos de dados. In Anais do XXXIX Simp ́osio Brasileiro de
Bancos de Dados, pages 155–166, Porto Alegre, RS, Brasil. SBC.
|
|
15 |
Neves, B., Sousa, T., Coutinho, D., Garcia, A., and Pereira, J. (2024). Explorando o
potencial e a viabilidade de llms open-source na an ́alise de sentimentos. In Anais
Estendidos do XV Congresso Brasileiro de Software: Teoria e Pr ́atica, pages 89–98,
Porto Alegre, RS, Brasil. SBC.
|
|
16 |
Ning, X., Lin, Z., Zhou, Z., Wang, Z., Yang, H., and Wang, Y. (2024). Skeleton-ofthought: Large language models can do parallel decoding. Proceedings ENLSP-III.
|
|
17 |
Reynolds, L. and McDonell, K. (2021). Prompt programming for large language models:
Beyond the few-shot paradigm. In Extended abstracts of the 2021 CHI conference on
human factors in computing systems, pages 1–7.
|
|
18 |
Sabit, E. (2023). Prompt engineering for chatgpt: a quick guide to techniques, tips, and
best practices. Techrxiv preprint 10.36227/techrxiv.22683919.
|
|
19 |
Sarker, L., Downing, M., Desai, A., and Bultan, T. (2024). Syntactic robustness for llmbased code generation. arXiv preprint arXiv:2404.01535.
|
|
20 |
Schulhoff, S., Ilie, M., Balepur, N., Kahadze, K., Liu, A., Si, C., Li, Y., Gupta, A.,
Han, H., Schulhoff, S., Dulepet, P. S., Vidyadhara, S., Ki, D., Agrawal, S., Pham,
C., Kroiz, G., Li, F., Tao, H., Srivastava, A., Costa, H. D., Gupta, S., Rogers, M. L.,
Goncearenco, I., Sarli, G., Galynker, I., Peskoff, D., Carpuat, M., White, J., Anadkat,
S., Hoyle, A., and Resnik, P. (2025). The prompt report: A systematic survey of
prompting techniques. arXiv preprint arXiv:2406.06608.
|
|
21 |
Shin, J., Tang, C., Mohati, T., Nayebi, M., Wang, S., and Hemmati, H. (2023). Prompt
engineering or fine tuning: An empirical assessment of large language models in automated software engineering tasks. ArXiv, abs/2310.10508.
|
|
22 |
Vatsal, S. and Dubey, H. (2024). A survey of prompt engineering methods in large language models for different nlp tasks. ArXiv, abs/2407.12994.
|
|
23 |
Wang, T., Zhou, N., and Chen, Z. (2024). Enhancing computer programming education
with llms: A study on effective prompt engineering for python code generation. arXiv
preprint arXiv:2407.05437.
|
|
24 |
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D.,
et al. (2022). Chain-of-thought prompting elicits reasoning in large language models.Advances in neural information processing systems, 35:24824–24837.
|
|
25 |
Weng, Y., Zhu, M., Xia, F., Li, B., He, S., Liu, S., Sun, B., Liu, K., and Zhao, J. (2022).
Large language models are better reasoners with self-verification. arXiv preprint
arXiv:2212.09561.
|
|
26 |
Woolson, R. F. (2005). Wilcoxon signed-rank test. Encyclopedia of biostatistics, 8.
|
|
27 |
Zheng, K., Decugis, J., Gehring, J., Cohen, T., Negrevergne, B., and Synnaeve, G. (2024).
What makes large language models reason in (multi-turn) code generation? arXiv
preprint arXiv:2410.08105.
|
|
28 |
Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H., and Ba, J. (2022). Large
language models are human-level prompt engineers. arXiv preprint arXiv:2211.01910.
|
|