1 |
Ahmad, S., Lavin, A., Purdy, S., and Agha, Z. (2017). Unsupervised real-time anomaly detection for streaming data. Neurocomputing, 262:134 – 147.
|
|
2 |
Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys, 41(3).
|
|
3 |
Duraj, A., Szczepaniak, P. S., and Sadok, A. (2025). Detection of anomalies in data streams using the lstm-cnn model. Sensors, 25(5).
|
|
4 |
Han, J., Kamber, M., and Pei, J. (2012). Data Mining: Concepts and Techniques. Elsevier.
|
|
5 |
Lima, J., Tavares, L. G., Pacitti, E., Ferreira, J. E., Santos, I., Siqueira, I. G., Carvalho, D., Porto, F., Coutinho, R., and Ogasawara, E. (2024). Online Event Detection in Streaming Time Series: Novel Metrics and Practical Insights. In Proceedings of the IJCNN 2024.
|
|
6 |
Lomio, F., Baselga, D. M., Moreschini, S., Huttunen, H., and Taibi, D. (2020). RARE: A labeled dataset for cloud-native memory anomalies. In MaLTeSQuE 2020, pages 19 – 24.
|
|
7 |
Moody, G. and Mark, R. (2001). The impact of the mit-bih arrhythmia database. IEEEEngineering in Medicine and Biology Magazine, 20(3):45–50.
|
|
8 |
Moritz, S., Rehbach, F., Chandrasekaran, S., Rebolledo, M., and Bartz-Beielstein, T. (2018). GECCO Industrial Challenge 2018 Dataset. Technical report, https://zenodo.org/record/3884398.
|
|
9 |
Ogasawara, E., Salles, R., Porto, F., and Pacitti, E. (2025). Event Detection in Time Series. Synthesis Lectures on Data Management. Springer Nature Switzerland, Cham, 1 edition.
|
|
10 |
Salles, R., Escobar, L., Baroni, L., Zorrilla, R., Ziviani, A., Kreischer, V., Delicato, F., Pires, P. F., Maia, L., Coutinho, R., Assis, L., and Ogasawara, E. (2020). Harbinger: Um framework para integração e análise de métodos de detecção de eventos em séries temporais. In Anais do Simpósio Brasileiro de Banco de Dados (SBBD), pages 73–84. SBC.
|
|
11 |
Vargas, R. E. V., Munaro, C. J., Ciarelli, P. M., Medeiros, A. G., do Amaral, B. G., Barrionuevo, D. C., de Araújo, J. C. D., Ribeiro, J. L., and aes, L. P. M. (2019). A realistic and public dataset with rare undesirable real events in oil wells. Journal of Petroleum Science and Engineering, 181.
|
|
12 |
webscope (2015). S5 - A Labeled Anomaly Detection Dataset, version 1.0. Technical report, https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70.
|
|
13 |
Wenig, P., Schmidl Sebastian, S., and Papenbrock, T. (2022). TimeEval: A Benchmarking Toolkit for Time Series Anomaly Detection Algorithms. Proceedings of the VLDB Endowment, 15(12):3678 – 3681.
|
|
14 |
Wu, R. and Keogh, E. J. (2023). Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion of Progress. IEEE Transactions on Knowledge and Data Engineering, 35(3):2421 – 2429.
|
|