SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Jânio Lima(janio.lima@aluno.cefet-rj.br)
2 Hélio Castro(helio.castro@aluno.cefet-rj.br)
3 Luiz Oliveira(luiz.oliveira.7@aluno.cefet-rj.br)
4 Ellen Silva(ellen.paixao@aluno.cefet-rj.br)
5 Lais Baroni(lais.baroni}@eic.cefet-rj.br)
6 Rebecca Salles(rebecca.pontes-salles@inria.fr)
7 Ricardo Vargas(ricardo.vargas@petrobras.com.br)
8 Eduardo Ogasawara(eogasawara@ieee.org)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Ahmad, S., Lavin, A., Purdy, S., and Agha, Z. (2017). Unsupervised real-time anomaly detection for streaming data. Neurocomputing, 262:134 – 147.
2 Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys, 41(3).
3 Duraj, A., Szczepaniak, P. S., and Sadok, A. (2025). Detection of anomalies in data streams using the lstm-cnn model. Sensors, 25(5).
4 Han, J., Kamber, M., and Pei, J. (2012). Data Mining: Concepts and Techniques. Elsevier.
5 Lima, J., Tavares, L. G., Pacitti, E., Ferreira, J. E., Santos, I., Siqueira, I. G., Carvalho, D., Porto, F., Coutinho, R., and Ogasawara, E. (2024). Online Event Detection in Streaming Time Series: Novel Metrics and Practical Insights. In Proceedings of the IJCNN 2024.
6 Lomio, F., Baselga, D. M., Moreschini, S., Huttunen, H., and Taibi, D. (2020). RARE: A labeled dataset for cloud-native memory anomalies. In MaLTeSQuE 2020, pages 19 – 24.
7 Moody, G. and Mark, R. (2001). The impact of the mit-bih arrhythmia database. IEEEEngineering in Medicine and Biology Magazine, 20(3):45–50.
8 Moritz, S., Rehbach, F., Chandrasekaran, S., Rebolledo, M., and Bartz-Beielstein, T. (2018). GECCO Industrial Challenge 2018 Dataset. Technical report, https://zenodo.org/record/3884398.
9 Ogasawara, E., Salles, R., Porto, F., and Pacitti, E. (2025). Event Detection in Time Series. Synthesis Lectures on Data Management. Springer Nature Switzerland, Cham, 1 edition.
10 Salles, R., Escobar, L., Baroni, L., Zorrilla, R., Ziviani, A., Kreischer, V., Delicato, F., Pires, P. F., Maia, L., Coutinho, R., Assis, L., and Ogasawara, E. (2020). Harbinger: Um framework para integração e análise de métodos de detecção de eventos em séries temporais. In Anais do Simpósio Brasileiro de Banco de Dados (SBBD), pages 73–84. SBC.
11 Vargas, R. E. V., Munaro, C. J., Ciarelli, P. M., Medeiros, A. G., do Amaral, B. G., Barrionuevo, D. C., de Araújo, J. C. D., Ribeiro, J. L., and aes, L. P. M. (2019). A realistic and public dataset with rare undesirable real events in oil wells. Journal of Petroleum Science and Engineering, 181.
12 webscope (2015). S5 - A Labeled Anomaly Detection Dataset, version 1.0. Technical report, https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70.
13 Wenig, P., Schmidl Sebastian, S., and Papenbrock, T. (2022). TimeEval: A Benchmarking Toolkit for Time Series Anomaly Detection Algorithms. Proceedings of the VLDB Endowment, 15(12):3678 – 3681.
14 Wu, R. and Keogh, E. J. (2023). Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion of Progress. IEEE Transactions on Knowledge and Data Engineering, 35(3):2421 – 2429.