1 |
de Freitas, N. A., da Silva, T. C., de Macêdo, J. F., Junior, L. M., and Cordeiro, M. (2021). Using deep learning for trajectory classification. In Proceedings of the 13th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, pages 664–671. INSTICC, SciTePress. DOI: 10.5220/0010227906640671
|
|
2 |
Ferrero, C. A., Petry, L. M., Alvares, L. O., Leite da Silva, C., Za- lewski, W., and Bogorny, V. (2020). MasterMovelets: discovering heterogeneous movelets for multiple aspect trajectory classification. Data Mining and Knowledge Discovery, 34(3):652–680. DOI: 10.1007/s10618-020-00676-x
|
|
3 |
Leite da Silva, C., May Petry, L., and Bogorny, V. (2019). A survey and comparison of trajectory classification methods. In 2019 8th Brazilian Conference on Intelligent Systems (BRACIS), pages 788–793. DOI: 10.1109/BRACIS.2019.00141
|
|
4 |
Mello, R. d. S., Bogorny, V., Alvares, L. O., Santana, L. H. Z., Ferrero, C. A., Frozza, A. A., Schreiner, G. A., and Renso, C. (2019). MASTER: A multiple aspect view on trajectories. Transactions in GIS, 23(4):805–822. DOI: 10.1111/tgis.12526
|
|
5 |
Petry, L. M., Ferrero, C. A., Alvares, L. O., Renso, C., and Bogorny, V. (2019). Towards semantic-aware multiple-aspect trajectory similarity measuring. Transactions in GIS, 23(5):960–975. DOI: 10.1111/tgis.12542
|
|
6 |
Petry, L. M., Leite da Silva, C., Esuli, A., Renso, C., and Bogorny, V. (2020). MARC: a robust method for multiple-aspect trajectory classification via space, time, and semantic embeddings. International Journal of Geographical Information Science, 34(7):1428–1450. DOI: 10.1080/13658816.2019.1707835
|
|
7 |
Portela, T. T., Bogorny, V., Bernasconi, A., and Renso, C. (2022a). Automatise: Multiple aspect trajectory data mining tool library. In 2022 23rd IEEE International Conference on Mobile Data Management (MDM), pages 282–285. DOI: 10.1109/MDM55031.2022.00060
|
|
8 |
Portela, T. T., Carvalho, J. T., and Bogorny, V. (2022b). HiPerMovelets: high-performance movelet extraction for trajectory classification. International Journal of Geographical Information Science, 36(5):1012–1036. DOI: 10.1080/13658816.2021.2018593
|
|
9 |
Portela, T. T., Machado, V. L., Carvalho, J. T., Bogorny, V., Bernasconi, A., and Renso, C. (2024). UltraMovelets: Efficient movelet extraction for multiple aspect trajectory classification. In Database and Expert Systems Applications (DEXA), pages 79–94, Cham. Springer Nature Switzerland. DOI: 10.1007/978-3-031-68312-1_6
|
|
10 |
Pugliese, C., Lettich, F., Renso, C., and Pinelli, F. (2022). MAT-Builder: a system to build semantically enriched trajectories. In 2022 23rd IEEE Inter- national Conference on Mobile Data Management (MDM), pages 274–277. DOI: 10.1109/MDM55031.2022.00058
|
|
11 |
Vicenzi, F., Petry, L. M., Silva, C. L. D., Alvares, L. O., and Bogorny, V. (2020). Exploring frequency-based approaches for efficient trajectory classification. Proceedings of the ACM Symposium on Applied Computing, pages 624–631. DOI: 10.1145/3341105.3374045
|
|
12 |
Viera-López, G., Morgado-Vega, J., Reyes, A., Altshuler, E., Almeida-Cruz, Y., and Manganini, G. (2023). pactus: A python framework for trajectory classification. Journal of Open Source Software, 8(89):5738. DOI: 10.21105/joss.05738
|
|