1 |
Abazari, F. et al. (2019). Mows: multi-objective workflow scheduling in cloud computing based on heuristic algorithm. Sim. Mod. Pract. and Theory., 93
|
|
2 |
Abraham, S. (2023). The hpc container experience on the summit supercomputer. In PEARC’23, page 273–277
|
|
3 |
Branco-Jr., E. C., Monteiro, J. M., et al. (2016). A flexible mechanism for data confidentiality in cloud database scenarios. In ICEIS 2016, pages 359–368.
|
|
4 |
de Oliveira, D., Liu, J., and Pacitti, E. (2019). Data-Intensive Workflow Management: For Clouds and Data-Intensive and Scalable Computing Environments. Morgan & Claypool
|
|
5 |
Ferreira, W. et al. (2024). AkôFlow: um Middleware para execução de Workflows científicos em múltiplos ambientes conteinerizados. In Proc. of the 39th SBBD. SBC.
|
|
6 |
Guerine, M. A., Stockinger, M. B., et al. (2019). A provenance-based heuristic for preserving results confidentiality in cloud-based scientific workflows. FGCS, 97:697–713
|
|
7 |
Javed, O. and Toor, S. (2021). An evaluation of container security vulnerability detection tools. ICCBDC ’21, page 95–101.
|
|
8 |
Rosseti, I., Ocaña, K., and de Oliveira, D. (2017). Towards preserving results confidentiality in cloud-based scientific workflows. WORKS ’17, New York, NY, USA. ACM.
|
|
9 |
Sakellariou, R. et al. (2009). Mapping workflows on grid resources: Experiments with the montage workflow. In ERCIM W. Group on Grids, pages 119–132
|
|
10 |
Shishido, H., Estrella, J. C., et al. (2018). Multi-objective optimization for workflow scheduling under task selection policies in clouds. In CEC, pages 1–8
|
|
11 |
Silva, R. et al. (2021). Análise de desempenho da distribuição de workflows científicos em nuvens com restrições de confidencialidade. In XX WPerformance, pages 37–48
|
|
12 |
Sujana, J. A. J. et al. (2019). Smart pso-based secured scheduling approaches for scientific workflows in cloud computing. Soft. Comp., 23(5):1745–1765
|
|
13 |
Tawfeek, M. A. et al. (2018). Service flow management with multi-objective constraints in heterogeneous computing. In ICCES, pages 258–263
|
|
14 |
Teylo, L. et al. (2017). A hybrid evolutionary algorithm for task scheduling and data assignment of data-intensive scientific workflows on clouds. FGCS, 76:1–17
|
|
15 |
Topcuoglu, H. et al. (2002). Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE TPDS, 13(3):260–274
|
|