1 |
Algan, G. and Ulusoy, I. (2020). Label noise types and their effects on deep learning. arXiv preprint arXiv:2003.10471
|
|
2 |
Frénay, B. and Verleysen, M. (2013). Classification in the presence of label noise: a survey. IEEE transactions on neural networks and learning systems, 25(5):845–869
|
|
3 |
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www.deeplearningbook.org
|
|
4 |
Han, B., Yao, Q., Liu, T., Niu, G., Tsang, I. W., Kwok, J. T., and Sugiyama, M. (2020). A survey of label-noise representation learning: Past, present and future. arXiv preprint arXiv:2011.04406
|
|
5 |
LeCun, Y. (1998). The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/
|
|
6 |
Nettleton, D. F., Orriols-Puig, A., and Fornells, A. (2010). A study of the effect of different types of noise on the precision of supervised learning techniques. Artificial intelligence review, 33(4):275–306
|
|
7 |
Patrini, G., Rozza, A., Krishna Menon, A., Nock, R., and Qu, L. (2017). Making deep neural networks robust to label noise: A loss correction approach. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1944–1952
|
|
8 |
Rolnick, D., Veit, A., Belongie, S., and Shavit, N. (2017). Deep learning is robust to massive label noise. arXiv preprint arXiv:1705.10694
|
|
9 |
Rusiecki, A. (2020). Standard dropout as remedy for training deep neural networks with label noise. In International Conference on Dependability and Complex Systems, pages 534–542. Springer
|
|
10 |
Russell, S. J. and Norvig, P. (2021). Artificial Intelligence: A Modern Approach. Pearson, global edition
|
|
11 |
Simard, P. Y., Steinkraus, D., Platt, J. C., et al. (2003). Best practices for convolutional neural networks applied to visual document analysis. In Icdar, volume 3
|
|
12 |
Song, H., Kim, M., Park, D., Shin, Y., and Lee, J.-G. (2020). Learning from noisy labels with deep neural networks: A survey. arXiv preprint arXiv:2007.08199
|
|
13 |
Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747
|
|
14 |
Zhang, Z. and Sabuncu, M. (2018). Generalized cross entropy loss for training deep neural networks with noisy labels. Advances in neural information processing systems, 31
|
|