SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Nathalia Cezar(czr.nathalia@gmail.com)
2 Isabela Gasparini(isabela.gasparini@udesc.br)
3 Daniel Lichtnow(dlichtnow@gmail.com)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Abdullah, N. A., Rasheed, R. A., Nizam, M. H., and Rahman, M. M. (2021). Eliciting auxiliary information for cold start user recommendation: A survey. Applied Sciences (Switzerland), 11(20).
2 Bettman, J. R., Luce, M. F., and Payne, J. W. (1998). Constructive Consumer Choice Processes. Journal of Consumer Research, 25(3):187–217
3 Celma, O., Herrera, P., and Serra, X. (2006). Bridging the music semantic gap. CEUR Workshop Proceedings, 187:927–934.
4 Celma, O., Ramırez, M., and Herrera, P. (2005). Foafing the Music: A music recommendation system based on RSS feeds and user preferences. ISMIR 005 - 6th International Conference on Music Information Retrieval, pages 464–467.
5 Cezar, N., Gasparini, I., Lichtnow, D., Lunardi, G., and de Oliveira, J. M. (2024). Exploring strategies to mitigate cold start in recommender systems: A systematic literature mapping. In Proceedings of the 26th International Conference on Enterprise Information Systems - Volume 1: ICEIS, pages 965–972. INSTICC, SciTePress
6 Consoni, G. (2014). Recuperação de informação em sistemas de recomendação: análise da interação mediada por computador e dos efeitos da filtragem colaborativa na seleção de itens no website da Amazon.com. ˜ Tese - Programa de Pós-graduação em Comunicação e Informação da Universidade Federal do Rio Grande do Sul
7 Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. (2001). Eigentaste: A Constant Time Collaborative Filtering Algorithm. Information Retrieval, 4(2):133–151.
8 Jelassi, M. N., Ben Yahia, S., and Nguifo, E. M. (2013). A personalized recommender system based on users’ information in folksonomies. WWW 2013 Companion - Proceedings of the 22nd International Conference on World Wide Web, pages 1215–1223.
9 Monti, D., Rizzo, G., and Morisio, M. (2021). A systematic literature review of multicriteria recommender systems, volume 54. Springer Netherlands
10 Panda, D. K. and Ray, S. (2022). Approaches and algorithms to mitigate cold start problems in recommender systems: a systematic literature review. Journal of Intelligent Information Systems, pages 341–366.
11 Ricci, F., Rokach, L., Shapira, B., Kantor, P. B., & Shapira, B. (2015). Introduction to recommender systems. Recommender systems handbook, 1-35.
12 Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S. (2007). Collaborative Filtering Recommender Systems, page 291–324. Springer-Verlag, Berlin, Heidelberg.
13 Son, L. H. (2016). Dealing with the new user cold-start problem in recommender systems: A comparative review. Information Systems, 58:87–104.