1 |
Fabbri, A. R., Kryściński, W., McCann, B., Xiong, C., Socher, R., and Radev, D. (2021). Summeval: Re-evaluating summarization evaluation. Transactions of the Association for Computational Linguistics, 9:391–409.
|
|
2 |
Farzindar, A. and Lapalme, G. (2004). LetSum, an automatic legal text summarizing system. In Jurix, pages 11–18.
|
|
3 |
Feijó, D. d. V. and Moreira, V. P. (2019). Summarizing legal rulings: Comparative experiments. In Proceedings of the International Conference on Recent Advances in Natural Language Processing, RANLP 2019, pages 313–322.
|
|
4 |
Feijó, D. d. V. and Moreira, V. P. (2023). Improving abstractive summarization of legal rulings through textual entailment. Artificial Intelligence and Law, 31(1):91–113.
|
|
5 |
Guimarães, J. A. C. (2004). Elaboração de ementas jurisprudenciais: elementos teórico-metodológicos, volume 9. Subsecretaria de Divulgação e Editoração da Secretaria de Pesquisa e Informação Jurídicas do Centro de Estudos Judiciários.
|
|
6 |
Jain, D., Borah, M. D., and Biswas, A. (2021). Summarization of legal documents: Where are we now and the way forward. Computer Science Review, 40:100388.
|
|
7 |
Kryściński, W., Keskar, N. S., McCann, B., Xiong, C., and Socher, R. (2019). Neural text summarization: A critical evaluation. arXiv preprint arXiv:1908.08960.
|
|
8 |
Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L. (2020). BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 7871–7880.
|
|
9 |
Lin, C.-Y. (2004). ROUGE: A package for automatic evaluation of summaries. In Text summarization branches out, pages 74–81.
|
|
10 |
Liu, Y. (2019). Fine-tune BERT for extractive summarization. CoRR, abs/1903.10318.
|
|
11 |
Pandya, V. (2019). Automatic text summarization of legal cases: A hybrid approach. In 5th International Conference on Advances in Computer Science and Information Technology (ACSTY-2019).
|
|
12 |
Polsley, S., Jhunjhunwala, P., and Huang, R. (2016). Casesummarizer: A system for automated summarization of legal texts. In COLING 2016, 26th International Conference on Computational Linguistics, Proceedings of the Conference System Demonstrations, pages 258–262.
|
|
13 |
Pu, A., Chung, H. W., Parikh, A. P., Gehrmann, S., and Sellam, T. (2021). Learning compact metrics for MT. In Conference on Empirical Methods in Natural Language Processing.
|
|
14 |
Sellam, T., Das, D., and Parikh, A. P. (2020). BLEURT: learning robust metrics for text generation. CoRR.
|
|
15 |
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. CoRR, abs/1706.03762.
|
|
16 |
Yuan, W., Neubig, G., and Liu, P. (2021). Bartscore: Evaluating generated text as text generation. In Advances in Neural Information Processing Systems, pages 27263–27277.
|
|
17 |
Zhang, J., Zhao, Y., Saleh, M., and Liu, P. J. (2020). PEGASUS: pre-training with extracted gap-sentences for abstractive summarization. In Proceedings of the 37th International Conference on Machine Learning, pages 11328–11339.
|
|
18 |
Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and Artzi, Y. (2019). Bertscore: Evaluating text generation with BERT. CoRR.
|
|
19 |
Zhao, W., Peyrard, M., Liu, F., Gao, Y., Meyer, C. M., and Eger, S. (2019). Moverscore: Text generation evaluating with contextualized embeddings and earth mover distance. CoRR.
|
|