1 |
Alashri, S. and Alalola, T. (2020). Functional analysis of the 2020 U.S. elections on twitter and facebook using machine learning. Procs Intl Conf ASONAM, pages 586–589.
|
|
2 |
Angles, R., Prat-Perez, A., Dominguez-Sal, D., and Larriba-Pey, J.-L. (2013). Benchmarking database systems for social network applications. ACM.
|
|
3 |
Barbosa, C., Felix, L., Alves, A., Xavier, C., and Vieira, V. (2022). Uso de URLs para caracterização de comunidades em redes sociais online. In BRASNAM, pages 25–36
|
|
4 |
BARDlN, L. (1977). Analise de conteúdo. Lisboa: edições , 70:225
|
|
5 |
Bodrunova, S. S., Litvinenko, A. A., and Blekanov, I. S. (2017). Comparing influencers: Activity vs. connectivity measures in defining key actors in twitter ad hoc discussions on migrants in germany and russia. In Intl Conf on Social Informatics, pages 360–376
|
|
6 |
Carley, K. (1991). A theory of group stability. American Soc. Review, 56(3):331–354
|
|
7 |
Costa, L., Reis, A., Bacha, C., Oliveira, G., Silva, M., Teixeira, M., Brandao, M., Lacerda, A., and Pappa, G. (2022). Alertas de fraude em licitações: Uma abordagem baseada em redes sociais. In BRASNAM, pages 37–48.
|
|
8 |
Elbaghazaoui, B. E., Amnai, M., and Fakhri, Y. (2022). Data profiling and machine learning to identify influencers from social media platforms. ICT Stds, pages 201–218
|
|
9 |
Hagen, L., Fox, A., O’Leary, H., Dyson, D., Walker, K., Lengacher, C. A., and Hernandez, R. (2022). The role of influential actors in fostering the polarized covid-19 vaccine discourse on twitter: Mixed methods of machine learning and inductive coding. JMIR Infodemiology, 2(1):e34231
|
|
10 |
Himelboim, I. (2017). Social Network Analysis (Social Media). Wiley
|
|
11 |
Ituassu, A., Lifschitz, S., Capone, L., Vaz, M. B., and Mannheimer, V. (2018). Publicacion de medios y preferencia electoral en twitter: analisis de opinion publica durante las elecciones del ano 2014 en brasil. Palabra Clave, 21(3):860–884.
|
|
12 |
Orabi, M., Mouheb, D., Al Aghbari, Z., and Kamel, I. (2020). Detection of bots in social media: A systematic review. Information Processing & Management, 57(4):102250
|
|
13 |
Paes, V., Araujo, D., Brito, K., and Andrade, E. (2022). Análise de sentimento em tweets relacionados ao desmatamento da floresta amazonica. In BRASNAM, pages 61–72
|
|
14 |
Paul, I., Khattar, A., Kumaraguru, P., Gupta, M., and Chopra, S. (2019). Elites tweet? characterizing the twitter verified user network. In 2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW), pages 278–285
|
|
15 |
Santia, G. C., Mujib, M. I., and Williams, J. R. (2019). Detecting social bots on facebook in an information veracity context. AAAI Conf Web and Social Media, 13(01):463–472
|
|
16 |
Santos, P. and Goya, D. (2022). Detecc¸ao de posicionamento e rotulação automática de usuarios do twitter: estudo sobre o embate científico-político no contexto da CPI da covid-19. In BRASNAM, pages 49–60
|
|
17 |
Silva, W., Adamo Santana, Lobato, F., and Pinheiro, M. (2017). A Methodology for Community Detection in Twitter. Association for Computing Machinery.
|
|
18 |
Tang, J., Chang, Y., and Liu, H. (2014). Mining social media with social theories. ACM SIGKDD Explorations Newsletter, 15:20–29
|
|
19 |
Wycislik, L. and Warchal, L. (2014). A Performance Comparison of Several Common Computation Tasks Used in Social Network Analysis Performed on Graph and Relational Databases, volume 242. Springer Verlag
|
|
20 |
Zhang, J., Zhang, R., Sun, J., Zhang, Y., Zhang, C., Zhang, J., Zhang, R., Sun, J., Zhang, Y., and Zhang, C. (2016). Truetop: A sybil-resilient system for user influence measurement on twitter. IEEE/ACM Trans. Netw., 24(5):2834–2846
|
|