1 |
Agrawal, R. and Srikant, R. (2000). Privacy-preserving data mining. In ACM Sigmod Record, volume 29, pages 439–450, California. ACM.
|
|
2 |
Byun, J., Kamara, A., Bertino, E., and Li, N. (2007). Efficient k-anonymization using clustering techniques. In 12th Int Con Database Syst Adv App, pages 188–200, Berlin.
|
|
3 |
Emam, K. (2006). Data anonymization practices in clinical research: a descriptive study. CHEO Research Institute, Ottawa.
|
|
4 |
Kedar, S., Dhawale, S., Vaibhav, W., Kadam, P., Wani, S., and Ingale, P. (2013). Privacy preserving data mining. Advanced Res. in Comp. and Com. Eng., 2(4):1677–1680.
|
|
5 |
Kumari, A., Rao, R., and Suman, M. (2012). Vector quantization for privacy preserving clustering in data mining. Advance Computing, 3(6):69–74.
|
|
6 |
Li, N., Li, T., and Venkatasubramaniam, S. (2007). t-Closeness. In 23rd International Conference on Data Engineering, 2007, pages 106–115, Istambul. IEEE.
|
|
7 |
Lidell, Y. and Pinkas, B. (2000). Privacy-preserving data mining. In International Cryptology Conference on Advances in Cryptology, 1880, pages 36–54, California. Springer.
|
|
8 |
Liu, L., Yang, K., Hu, L., and Li, L. (2012). Using noise addition method based on pre-mining to protect healthcare privacy. Journal Control Eng. App. Inf., 14(2):58–64.
|
|
9 |
Machanavajjhala, A., Kifer, D., Gehrke, J., and Venkitasubramaniam, M. (2007). ldiversity: Privacy beyond k-anonymity. ACM Transactions on KDD, 1(3):52.
|
|
10 |
Oliveira, S. and Za¨ıane, O. (2007). A privacy-preserving clustering approach toward secure and effective data analysis for business collaboration. Com&Sec, 26(1):81–93.
|
|
11 |
Oliveira, S. and Za¨ıane, O. (2010). Privacy Preserving Clustering by Data Transformation. Journal of Information and Data Management, 1(1):37–51.
|
|
12 |
Sinha, B. and Kumar, J. (2010). Privacy Preserving Clustering In Data Mining. PhD thesis, National Institute of Technology Rourkela, Rourkela.
|
|
13 |
Xiao, X. and Tao, Y. (2006). Anatomy: Simple and effective privacy preservation. In Proc. of the 32nd Int. Conf. on Very Large Data Bases, pages 139–150, Hong Kong.
|
|