SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Maria de Lourdes M. Silva(malu.maia@lsbd.ufc.br)
2 Iago Chaves(iagocc@gmail.com)
3 Eduardo Neto(eduardo.rodrigues@lsbd.ufc.br)
4 André Luís Mendonça(andre.luis@lsbd.ufc.br)
5 Javam Machado(javam.machado@lsbd.ufc.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 [Abdollahpouri et al. 2017] Abdollahpouri, H., Burke, R., and Mobasher, B. (2017). Controlling popularity bias in learning-to-rank recommendation. In Proceedings of the eleventh ACM conference on recommender systems, pages 42–46.
2 [Abdollahpouri et al. 2019] Abdollahpouri, H., Mansoury, M., Burke, R., and Mobasher, B. (2019). The unfairness of popularity bias in recommendation. arXiv preprint arXiv:1907.13286.
3 [Biega et al. 2018] Biega, A. J., Gummadi, K. P., and Weikum, G. (2018). Equity of attention: Amortizing individual fairness in rankings. In The 41st international acm sigir conference on research & development in information retrieval, pages 405–414.
4 [Boratto et al. 2021] Boratto, L., Fenu, G., and Marras, M. (2021). Connecting user and item perspectives in popularity debiasing for collaborative recommendation. Information Processing & Management, 58(1):102387.
5 [Celma 2010] Celma, O. (2010). Music Recommendation and Discovery in the Long Tail. Springer.
6 [Do et al. 2021] Do, V., Corbett-Davies, S., Atif, J., and Usunier, N. (2021). Two-sided fairness in rankings via lorenz dominance. Advances in Neural Information Processing Systems, 34:8596–8608.
7 [Frank et al. 1956] Frank, M., Wolfe, P., et al. (1956). An algorithm for quadratic programming. Naval research logistics quarterly, 3(1-2):95–110
8 [Harper and Konstan 2015] Harper, F. M. and Konstan, J. A. (2015). The movielens datasets: History and context. Acm transactions on interactive intelligent systems (tiis), 5(4):1–19.
9 [Järvelin and Kekäläinen 2002] Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information Systems (TOIS), 20(4):422–446.
10 [Khenissi and Nasraoui 2020] Khenissi, S. and Nasraoui, O. (2020). Modeling and counteracting exposure bias in recommender systems. arXiv preprint arXiv:2001.04832.
11 [Koren et al. 2009] Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8):30–37.
12 [Merton 1968] Merton, R. K. (1968). The matthew effect in science: The reward and communication systems of science are considered. Science, 159(3810):56–63.
13 [Morik et al. 2020] Morik, M., Singh, A., Hong, J., and Joachims, T. (2020). Controlling fairness and bias in dynamic learning-to-rank. In Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval, pages 429–438.
14 [Natarajan et al. 2020] Natarajan, S., Vairavasundaram, S., Natarajan, S., and Gandomi, A. H. (2020). Resolving data sparsity and cold start problem in collaborative filtering recommender system using linked open data. Expert Systems with Applications, 149:113248.
15 [Ni et al. 2019] Ni, J., Li, J., and McAuley, J. (2019). Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP), pages 188–197.
16 [Sang et al. 2024] Sang, S., Ma, M., and Pang, H. (2024). Weighted matrix factorization recommendation model incorporating social trust. Applied Sciences, 14(2):879.
17 [Singh and Joachims 2018] Singh, A. and Joachims, T. (2018). Fairness of exposure in rankings. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pages 2219–2228.
18 [Usunier et al. 2022] Usunier, N., Do, V., and Dohmatob, E. (2022). Fast online ranking with fairness of exposure. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, pages 2157–2167.
19 [Wu et al. 2021] Wu, Y., Cao, J., Xu, G., and Tan, Y. (2021). Tfrom: A two-sided fairness- aware recommendation model for both customers and providers. In Proceedings of the 44th international ACM SIGIR conference on research and development in information retrieval, pages 1013–1022.
20 [Yin et al. 2012] Yin, H., Cui, B., Li, J., Yao, J., and Chen, C. (2012). Challenging the long tail recommendation. arXiv preprint arXiv:1205.6700.