SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Maria Luiza Falci(marialuizafalci@id.uff.br)
2 Débora Pina(dbpina@cos.ufrj.br)
3 Liliane Kunstmann(lneves@cos.ufrj.br)
4 Vanessa Braganholo (vanessa@ic.uff.br)
5 Daniel de Oliveira(danielcmo@ic.uff.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Bai, J., Lee, K. F., Hofmeister, M., Mosbach, S., Akroyd, J., and Kraft, M. (2024). A derived information framework for a dynamic knowledge graph and its application to smart cities. Future Generation Computer Systems, 152:112–126.
2 Bilal, M., Usmani, R. S. A., Tayyab, M., Mahmoud, A. A., Abdalla, R. M., Marjani, M., Pillai, T. R., and Targio Hashem, I. A. (2020). Smart Cities Data: Framework, Applications, and Challenges, pages 1–29. Springer International Publishing, Cham.
3 Bola˜nos-Martinez, D., Bermudez-Edo, M., and Garrido, J. L. (2024). Clustering pipeline for vehicle behavior in smart villages. Information Fusion, 104:102164.
4 Bonadia, S., Gama, R., Oliveira, D., Miranda, F., and Lage, M. (2023). Visual analytics using heterogeneous urban data. In Conference on Graphics, Patterns and Images, pages 25–30, Porto Alegre, RS, Brasil. SBC.
5 Cichy, R. M. and Kaiser, D. (2019). Deep neural networks as scientific models. Trends in cognitive sciences, 23(4):305–317.
6 Emaldi, M., Pena, O., Lazaro, J., Lopez-de Ipina, D., Vanhecke, S., and Mannens, E. (2013). To trust, or not to trust: Highlighting the need for data provenance in mobile apps for smart cities. In International Workshop on Semantic Sensor Networks, pages 1–4.
7 Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for computational tasks: A survey. Computing in science & engineering, 10(3):11–21.
8 Hoque, M. A. and Hasan, R. (2022). A trust management framework for connected autonomous vehicles using interaction provenance. In IEEE International Conference on Communications, pages 2236–2241. IEEE.
9 Ikeda, R., Sarma, A. D., and Widom, J. (2013). Logical provenance in data-oriented workflows? In IEEE International Conference on Data Engineering, pages 877–888. IEEE.
10 Javed, B., Khan, Z., and McClatchey, R. (2017a). A network-based approach to capture provenance of a policy-making process. In International Database Engineering & Applications Symposium, pages 283–286.
11 Javed, B., Khan, Z., and McClatchey, R. (2017b). Using a model-driven approach in building a provenance framework for tracking policy-making processes in smart cities. In International Database Engineering & Applications Symposium, pages 66–73.
12 Javed, B., Khan, Z., and McClatchey, R. (2018). An adaptable system to support provenance management for the public policy-making process in smart cities. Informatics, 5(1):3:1– 26.
13 Javed, B., McClatchey, R., Khan, Z., and Shamdasani, J. (2016). A provenance framework for policy analytics in smart cities. In International Conference on Internet of Things and Big Data, pages 429–434.
14 Laamech, N., Munier, M., and Pham, C. (2021). Towards a data provenance model for private data sharing management in iot. In IEEE International Enterprise Distributed Object Computing Workshop, pages 210–215. IEEE.
15 Lin, S., Xiao, H., Jiang, W., Li, D., Liang, J., and Li, Z. (2023). A survey of provenance in scientific workflow. J. High Speed Networks, 29(2):129–145.
16 McPhillips, T. M. et al. (2015). Yesworkflow: A user-oriented, language-independent tool for recovering workflow information from scripts. CoRR, abs/1502.02403.
17 Moreau, L., Batlajery, B. V., Huynh, T. D., Michaelides, D., and Packer, H. (2018). A templating system to generate provenance. IEEE Transactions on Software Engineering, 44(2):103–121.
18 Moreau, L. and Missier, P. (2013). PROV-DM: the PROV data model. W3C Recommend.
19 Nepal, A., Amanullah, M. A., Doss, R., and Jiang, F. (2024a). Secure data provenance in internet of vehicles with data plausibility for security and trust. In IEEE World AI IoT Congress, pages 612–618. IEEE.
20 Nepal, A., Doss, R., and Jiang, F. (2023). Secure data provenance for internet of vehicles with verifiable credentials. In IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference, pages 0210–0218. IEEE.
21 Nepal, A., Doss, R., and Jiang, F. (2024b). Secure data provenance in internet of vehicles with verifiable credentials for security and privacy. In Annual IEEE/IFIP International Conference on Dependable Systems and Networks-Supplemental Volume, pages 59–61. IEEE.
22 Pasquier, T., Han, X., Goldstein, M., Moyer, T., Eyers, D., Seltzer, M., and Bacon, J. (2017). Practical whole-system provenance capture. In Symposium on Cloud Computing, page 405–418, New York, NY, USA. Association for Computing Machinery.
23 Rodrigues, A. J., Vieira, J., Fontana, R. L., de Cássia Barroso, R., Silva, J. A., et al. (2015). a urbanização no mundo e no brasil sob um enfoque geográfico. Caderno de Graduação- Ciências Humanas e Sociais-UNIT-SERGIPE, pages 95–106.
24 Roriz Junior, M., de Oliveira, R. P., Carvalho, F., Lifschitz, S., and Endler, M. (2019). M ensageria: A smart city framework for real-time analysis of traffic data streams. In Big Social Data and Urban Computing Workshop, pages 59–73. Springer.
25 Sadineni, L., Pilli, E. S., and Battula, R. B. (2023). Provlink-iot: A novel provenance model for link-layer forensics in iot networks. Forensic Science International: Digital Investigation, 46:301600.
26 Silva, V., de Oliveira, D., Valduriez, P., and Mattoso, M. (2018). Dfanalyzer: Runtime dataflow analysis of scientific applications using provenance. Proceedings of the VLDB Endowment.
27 Silva, V., Leite, J., Camata, J. J., De Oliveira, D., Coutinho, A. L. G. A., Valduriez, P., and Mattoso, M. (2017). Raw data queries during data-intensive parallel workflow execution. Future Generation Computer Systems, 75:402–422.
28 Victorino, F., Amorim, A., et al. (2023). Pluv-web: um gateway científico orientado a dados para análise e monitoramento de chuvas na cidade de Niterói. In Anais Estendidos do Simpósio Brasileiro de Bancos de Dados, pages 108–113, Belo Horizonte, Brasil. SBC.
29 Wilms, D., Stoecker, C., and Caballero, J. (2021). Data provenance in vehicle data chains. In IEEE Vehicular Technology Conference, pages 1–5. IEEE.