1 |
Bai, J., Lee, K. F., Hofmeister, M., Mosbach, S., Akroyd, J., and Kraft, M. (2024). A derived
information framework for a dynamic knowledge graph and its application to smart cities.
Future Generation Computer Systems, 152:112–126.
|
|
2 |
Bilal, M., Usmani, R. S. A., Tayyab, M., Mahmoud, A. A., Abdalla, R. M., Marjani, M., Pillai,
T. R., and Targio Hashem, I. A. (2020). Smart Cities Data: Framework, Applications,
and Challenges, pages 1–29. Springer International Publishing, Cham.
|
|
3 |
Bola˜nos-Martinez, D., Bermudez-Edo, M., and Garrido, J. L. (2024). Clustering pipeline for
vehicle behavior in smart villages. Information Fusion, 104:102164.
|
|
4 |
Bonadia, S., Gama, R., Oliveira, D., Miranda, F., and Lage, M. (2023). Visual analytics using
heterogeneous urban data. In Conference on Graphics, Patterns and Images, pages 25–30,
Porto Alegre, RS, Brasil. SBC.
|
|
5 |
Cichy, R. M. and Kaiser, D. (2019). Deep neural networks as scientific models. Trends in
cognitive sciences, 23(4):305–317.
|
|
6 |
Emaldi, M., Pena, O., Lazaro, J., Lopez-de Ipina, D., Vanhecke, S., and Mannens, E. (2013).
To trust, or not to trust: Highlighting the need for data provenance in mobile apps for smart
cities. In International Workshop on Semantic Sensor Networks, pages 1–4.
|
|
7 |
Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for computational tasks:
A survey. Computing in science & engineering, 10(3):11–21.
|
|
8 |
Hoque, M. A. and Hasan, R. (2022). A trust management framework for connected autonomous
vehicles using interaction provenance. In IEEE International Conference on
Communications, pages 2236–2241. IEEE.
|
|
9 |
Ikeda, R., Sarma, A. D., and Widom, J. (2013). Logical provenance in data-oriented workflows?
In IEEE International Conference on Data Engineering, pages 877–888. IEEE.
|
|
10 |
Javed, B., Khan, Z., and McClatchey, R. (2017a). A network-based approach to capture
provenance of a policy-making process. In International Database Engineering & Applications
Symposium, pages 283–286.
|
|
11 |
Javed, B., Khan, Z., and McClatchey, R. (2017b). Using a model-driven approach in building
a provenance framework for tracking policy-making processes in smart cities. In
International Database Engineering & Applications Symposium, pages 66–73.
|
|
12 |
Javed, B., Khan, Z., and McClatchey, R. (2018). An adaptable system to support provenance
management for the public policy-making process in smart cities. Informatics, 5(1):3:1–
26.
|
|
13 |
Javed, B., McClatchey, R., Khan, Z., and Shamdasani, J. (2016). A provenance framework
for policy analytics in smart cities. In International Conference on Internet of Things and
Big Data, pages 429–434.
|
|
14 |
Laamech, N., Munier, M., and Pham, C. (2021). Towards a data provenance model for
private data sharing management in iot. In IEEE International Enterprise Distributed
Object Computing Workshop, pages 210–215. IEEE.
|
|
15 |
Lin, S., Xiao, H., Jiang, W., Li, D., Liang, J., and Li, Z. (2023). A survey of provenance in
scientific workflow. J. High Speed Networks, 29(2):129–145.
|
|
16 |
McPhillips, T. M. et al. (2015). Yesworkflow: A user-oriented, language-independent tool
for recovering workflow information from scripts. CoRR, abs/1502.02403.
|
|
17 |
Moreau, L., Batlajery, B. V., Huynh, T. D., Michaelides, D., and Packer, H. (2018). A
templating system to generate provenance. IEEE Transactions on Software Engineering,
44(2):103–121.
|
|
18 |
Moreau, L. and Missier, P. (2013). PROV-DM: the PROV data model. W3C Recommend.
|
|
19 |
Nepal, A., Amanullah, M. A., Doss, R., and Jiang, F. (2024a). Secure data provenance in
internet of vehicles with data plausibility for security and trust. In IEEE World AI IoT
Congress, pages 612–618. IEEE.
|
|
20 |
Nepal, A., Doss, R., and Jiang, F. (2023). Secure data provenance for internet of vehicles
with verifiable credentials. In IEEE Annual Ubiquitous Computing, Electronics & Mobile
Communication Conference, pages 0210–0218. IEEE.
|
|
21 |
Nepal, A., Doss, R., and Jiang, F. (2024b). Secure data provenance in internet of vehicles
with verifiable credentials for security and privacy. In Annual IEEE/IFIP International
Conference on Dependable Systems and Networks-Supplemental Volume, pages 59–61.
IEEE.
|
|
22 |
Pasquier, T., Han, X., Goldstein, M., Moyer, T., Eyers, D., Seltzer, M., and Bacon, J. (2017).
Practical whole-system provenance capture. In Symposium on Cloud Computing, page
405–418, New York, NY, USA. Association for Computing Machinery.
|
|
23 |
Rodrigues, A. J., Vieira, J., Fontana, R. L., de Cássia Barroso, R., Silva, J. A., et al. (2015).
a urbanização no mundo e no brasil sob um enfoque geográfico. Caderno de Graduação-
Ciências Humanas e Sociais-UNIT-SERGIPE, pages 95–106.
|
|
24 |
Roriz Junior, M., de Oliveira, R. P., Carvalho, F., Lifschitz, S., and Endler, M. (2019). M
ensageria: A smart city framework for real-time analysis of traffic data streams. In Big
Social Data and Urban Computing Workshop, pages 59–73. Springer.
|
|
25 |
Sadineni, L., Pilli, E. S., and Battula, R. B. (2023). Provlink-iot: A novel provenance model
for link-layer forensics in iot networks. Forensic Science International: Digital Investigation,
46:301600.
|
|
26 |
Silva, V., de Oliveira, D., Valduriez, P., and Mattoso, M. (2018). Dfanalyzer: Runtime dataflow
analysis of scientific applications using provenance. Proceedings of the VLDB
Endowment.
|
|
27 |
Silva, V., Leite, J., Camata, J. J., De Oliveira, D., Coutinho, A. L. G. A., Valduriez, P., and
Mattoso, M. (2017). Raw data queries during data-intensive parallel workflow execution.
Future Generation Computer Systems, 75:402–422.
|
|
28 |
Victorino, F., Amorim, A., et al. (2023). Pluv-web: um gateway científico orientado a dados para análise e monitoramento de chuvas na cidade de Niterói. In Anais Estendidos do
Simpósio Brasileiro de Bancos de Dados, pages 108–113, Belo Horizonte, Brasil. SBC.
|
|
29 |
Wilms, D., Stoecker, C., and Caballero, J. (2021). Data provenance in vehicle data chains. In
IEEE Vehicular Technology Conference, pages 1–5. IEEE.
|
|