SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Eliane Karasawa(eligniechk@gmail.com)
2 Elaine Sousa(parros@icmc.usp.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Agrawal, R., Imieliński, T., and Swami, A. (1993). Mining association rules between sets of items in large databases. SIGMOD Rec., 22(2):207–216.
2 Amaral, T. and Sousa, E. (2019). Trier: A fast and scalable method for mining temporal exception rules. In Anais do XXXIV SBBD, pages 1–12. SBC.
3 Chen, X. and Petrounias, I. (2000). Discovering temporal association rules: Algorithms, language and system. In 16th ICDE, pages 306–306. IEEE.
4 Das, G., Lin, K.-I., Mannila, H., Renganathan, G., and Smyth, P. (1998). Rule discovery from time series. In 4th ACM KDD, volume 98, pages 16–22.
5 de Oliveira, F. A., Costa, R. L., Goldschmidt, R. R., and Cavalcanti, M. C. (2017). Mineração de regras de associação multirrelação em grafos: Direcionando o processo de busca. In SBBD (Short Papers), pages 270–275.
6 Han, J., Kamber, M., and Pei, J. (2011). Data mining: Concepts and techniques. (3rd ed), Morgan Kauffman.
7 Harms, S. K. and Deogun, J. S. (2004). Sequential association rule mining with time lags. Journal of Intelligent Information Systems, 22(1):7–22.
8 Lin, J., Keogh, E., Lonardi, S., and Chiu, B. (2003). A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD, DMKD ’03, page 2–11, New York, NY, USA.
9 Romani, L. A. S., de Avila, A. M. H., Zullo, J., Chbeir, R., Traina, C., and Traina, A. J. M. (2010). Clearminer: a new algorithm for mining association patterns on heterogeneous time series from climate data. In ACM, SAC ’10, page 900–905, New York, NY, USA.
10 Segura-Delgado, A., Gacto, M. J., Alcalá, R., and Alcalá-Fdez, J. (2020). Temporal association rule mining: An overview considering the time variable as an integral or implied component. WIREs Data Mining and Knowledge Discovery, 10(4):e1367.
11 Zhao, Y. and Zhang, T. (2017). Discovery of temporal association rules in multivariate time series. In International Conference on Mathematics, Modelling and Simulation Technologies and Applications, 2017, Xiamen, pages 294–300.