1 |
Berant, J., Chou, A., Frostig, R., and Liang, P. (2013). Semantic parsing on Freebase
from question-answer pairs. In Yarowsky, D., Baldwin, T., Korhonen, A., Livescu,
K., and Bethard, S., editors, Proceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1533–1544, Seattle, Washington, USA.
Association for Computational Linguistics.
|
|
2 |
Chen, D., Fisch, A., Weston, J., and Bordes, A. (2017). Reading wikipedia to answer
open-domain questions. arXiv preprint arXiv:1704.00051.
|
|
3 |
Ju, M., Yu, W., Zhao, T., Zhang, C., and Ye, Y. (2022). Grape: Knowledge graph enhanced
passage reader for open-domain question answering. arXiv preprint arXiv:2210.02933.
|
|
4 |
Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., and Yih, W.-t.
(2020). Dense passage retrieval for open-domain question answering. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 6769–6781.
|
|
5 |
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., K¨uttler, H., Lewis,
M., Yih, W.-t., Rockt¨aschel, T., Riedel, S., and Petrov, S. (2020). Retrieval-augmented
generation for knowledge-intensive nlp tasks. In Advances in Neural Information Pro-
cessing Systems (NeurIPS).
|
|
6 |
Malkov, Y. A. and Yashunin, D. A. (2018). Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 42(4):824–836.
|
|
7 |
Oguz, B., Chen, X., Karpukhin, V., Peshterliev, S., Okhonko, D., Schlichtkrull, M.,
Gupta, S., Mehdad, Y., and Yih, S. (2020). Unik-qa: Unified representations of struc-
tured and unstructured knowledge for open-domain question answering. arXiv preprint
arXiv:2012.14610.
|
|
8 |
Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese
bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3982–3992.
|
|
9 |
Roberts, K. (2024). Information Retrieval, pages 195–230. Springer International Pub-
lishing, Cham.
|
|
10 |
Saha, A., Pahuja, V., Khapra, M. M., Sankaranarayanan, K., and Chandar, S. (2018).
Complex sequential question answering: Towards learning to converse over linked
question answer pairs with a knowledge graph.
|
|
11 |
Sarmah, B., Mehta, D., Hall, B., Rao, R., Patel, S., and Pasquali, S. (2024). Hybridrag:
Integrating knowledge graphs and vector retrieval augmented generation for efficient
information extraction. In Proceedings of the 5th ACM International Conference on AI
in Finance, pages 608–616.
|
|
12 |
Sun, H., Bedrax-Weiss, T., and Cohen, W. (2019). PullNet: Open domain question an-
swering with iterative retrieval on knowledge bases and text. In Inui, K., Jiang, J., Ng,
V., and Wan, X., editors, Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP), pages 2380–2390, Hong Kong, China.
Association for Computational Linguistics.
|
|
13 |
Sun, H., Dhingra, B., Zaheer, M., Mazaitis, K., Salakhutdinov, R., and Cohen, W. (2018).
Open domain question answering using early fusion of knowledge bases and text. In
Riloff, E., Chiang, D., Hockenmaier, J., and Tsujii, J., editors, Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 4231–4242,
Brussels, Belgium. Association for Computational Linguistics.
|
|
14 |
Xavier, O. C. and da Silva Soares, A. (2024). Geração com recuperação aumentada (RAG) em grafos de conhecimento. In da Silva Monteiro Filho, J. M., Razente, H., and dos
Santos Mello, R., editors, Tópicos em Gerenciamento de Dados e Informações: Mini-cursos do SBBD 2024. Sociedade Brasileira de Computação, São Paulo, Brazil.
|
|
15 |
Yih, W.-t., Richardson, M., Meek, C., Chang, M.-W., and Suh, J. (2016). The value of
semantic parse labeling for knowledge base question answering. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), pages 201–206.
|
|
16 |
Yu, D., Zhu, C., Fang, Y., Yu, W., Wang, S., Xu, Y., Ren, X., Yang, Y., and Zeng, M.
(2021). Kg-fid: Infusing knowledge graph in fusion-in-decoder for open-domain ques-
tion answering. arXiv preprint arXiv:2110.04330.
|
|
17 |
Zhou, M., Shi, Z., Huang, M., and Zhu, X. (2020). Knowledge-aided open-domain ques-
tion answering. arXiv preprint arXiv:2006.05244.
|
|