1 |
Andrés-León, E., Cases, I., Alonso, S., & Rojas, A. M. (2017). Novel miRNA-mRNA interactions conserved in essential cancer pathways. Scientific Reports, 7(1), 46101. https://doi.org/10.1038/srep46101
|
|
2 |
Barabási, A.-L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: a network-based approach to human disease. Nature Reviews. Genetics, 12(1), 56–68. https://doi.org/10.1038/nrg2918
|
|
3 |
Cancer Genome Atlas Network. (2012). Comprehensive molecular portraits of human breast tumours. Nature, 490(7418), 61–70. https://doi.org/10.1038/nature11412
|
|
4 |
Cancer Genome Atlas Research Network, Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R. M., Ozenberger, B. A., Ellrott, K., Shmulevich, I., Sander, C., & Stuart, J. M. (2013). The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics, 45(10), 1113–1120. https://doi.org/10.1038/ng.2764
|
|
5 |
Chen, Y., Chen, L., Lun, A. T. L., Baldoni, P. L., & Smyth, G. K. (2025). edgeR v4: powerful differential analysis of sequencing data with expanded functionality and improved support for small counts and larger datasets. Nucleic Acids Research, 53(2), 13–14. https://doi.org/10.1093/nar/gkaf018
|
|
6 |
Costa, L. da F., Rodrigues, F. A., Travieso, G., & Villas Boas, P. R. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1), 167–242. https://doi.org/10.1080/00018730601170527
|
|
7 |
Dragomir, M., Mafra, A. C. P., Dias, S. M. G., Vasilescu, C., & Calin, G. A. (2018). Using microRNA Networks to Understand Cancer. International Journal of Molecular Sciences, 19(7), 1871. https://doi.org/10.3390/ijms19071871
|
|
8 |
Fu, J., Tang, W., Du, P., Wang, G., Chen, W., Li, J., Zhu, Y., Gao, J., & Cui, L. (2012). Identifying MicroRNA-mRNA regulatory network in colorectal cancer by a combination of expression profile and bioinformatics analysis. BMC Systems Biology, 6(1), 68. https://doi.org/10.1186/1752-0509-6-68
|
|
9 |
Hayes, J., Peruzzi, P. P., & Lawler, S. (2014). MicroRNAs in cancer: biomarkers, functions and therapy. Trends in Molecular Medicine, 20(8), 460–469. https://doi.org/10.1016/j.molmed.2014.06.005
|
|
10 |
Hornberg, J. J., Bruggeman, F. J., Westerhoff, H. v., & Lankelma, J. (2006). Cancer: A Systems Biology disease. Biosystems, 83(2–3), 81–90. https://doi.org/10.1016/j.biosystems.2005.05.014
|
|
11 |
Jacobsen, A., Silber, J., Harinath, G., Huse, J. T., Schultz, N., & Sander, C. (2013). Analysis of microRNA-target interactions across diverse cancer types. Nature Structural & Molecular Biology, 20(11), 1325–1332. https://doi.org/10.1038/nsmb.2678
|
|
12 |
Laubenbacher, R., Hower, V., Jarrah, A., Torti, S. v., Shulaev, V., Mendes, P., Torti, F. M., & Akman, S. (2009). A systems biology view of cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1796(2), 129–139. https://doi.org/10.1016/j.bbcan.2009.06.001
|
|
13 |
Lee, J., Kim, H. E., Song, Y.-S., Cho, E. Y., & Lee, A. (2019). miR-106b-5p and miR-17-5p could predict recurrence and progression in breast ductal carcinoma in situ based on the transforming growth factor-beta pathway. Breast Cancer Research and Treatment, 176(1), 119–130. https://doi.org/10.1007/s10549-019-05192-1
|
|
14 |
Li, N., Miao, Y., Shan, Y., Liu, B., Li, Y., Zhao, L., & Jia, L. (2017). MiR-106b and miR-93 regulate cell progression by suppression of PTEN via PI3K/Akt pathway in breast cancer. Cell Death & Disease, 8(5), e2796–e2796. https://doi.org/10.1038/cddis.2017.119
|
|
15 |
Malhotra, G. K., Zhao, X., Band, H., & Band, V. (2010). Histological, molecular and functional subtypes of breast cancers. Cancer Biology & Therapy, 10(10), 955–960. https://doi.org/10.4161/cbt.10.10.13879
|
|
16 |
Morselli Gysi, D., & Barabási, A.-L. (2023). Noncoding RNAs improve the predictive power of network medicine. Proceedings of the National Academy of Sciences of the United States of America, 120(45), e2301342120. https://doi.org/10.1073/pnas.2301342120
|
|
17 |
Na, Y.-J., & Kim, J. H. (2013). Understanding cooperativity of microRNAs via microRNA association networks. BMC Genomics, 14(Suppl 5), S17. https://doi.org/10.1186/1471-2164-14-S5-S17
|
|
18 |
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
|
|
19 |
Sticht, C., de La Torre, C., Parveen, A., & Gretz, N. (2018). miRWalk: An online resource for prediction of microRNA binding sites. PLOS ONE, 13(10), e0206239. https://doi.org/10.1371/journal.pone.0206239
|
|
20 |
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
|
|
21 |
Vulliard, L., & Menche, J. (2021). Complex Networks in Health and Disease. In Systems Medicine (Vols. 1–3, pp. 26–33). Elsevier. https://doi.org/10.1016/B978-0-12-801238-3.11640-X
|
|
22 |
Xu, K., Zhang, P., Zhang, J., Quan, H., Wang, J., & Liang, Y. (2021). Identification of potential micro-messenger RNAs (miRNA–mRNA) interaction network of osteosarcoma. Bioengineered, 12(1), 3275–3293. https://doi.org/10.1080/21655979.2021.1947065
|
|