1 |
Aggarwal, C. C. et al. (2016). Recommender systems, volume 1. Springer.
|
|
2 |
Balloccu, G., Boratto, L., Fenu, G., Malloci, F. M., and Marras, M. (2024). Explainable recommender systems with knowledge graphs and language models. In European Conference on Information Retrieval, pages 352–357. Springer.
|
|
3 |
Giray, L. (2023). Prompt engineering with chatgpt: a guide for academic writers. Annals of biomedical engineering, 51(12):2629–2633.
|
|
4 |
Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G. D., Gutierrez, C., Kirrane, S., Gayo, J. E. L., Navigli, R., Neumaier, S., et al. (2021). Knowledge graphs. ACM Computing Surveys (Csur), 54(4):1–37.
|
|
5 |
Ji, S., Pan, S., Cambria, E., Marttinen, P., and Philip, S. Y. (2021). A survey on knowledge graphs: Representation, acquisition, and applications. IEEE transactions on neural networks and learning systems, 33(2):494–514.
|
|
6 |
Lops, P., De Gemmis, M., and Semeraro, G. (2011). Content-based recommender systems: State of the art and trends. Recommender systems handbook, pages 73–105.
|
|
7 |
Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E. (2015). A review of relational machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33.
|
|
8 |
Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., and Wu, X. (2024). Unifying large language models and knowledge graphs: A roadmap. IEEE Transactions on Knowledge and Data Engineering.
|
|
9 |
Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent neural networks. In International conference on machine learning, pages 1310–1318. Pmlr.
|
|
10 |
Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S. (2007). Collaborative filtering recommender systems. In The adaptive web: methods and strategies of web personalization, pages 291–324. Springer.
|
|
11 |
Seabra, A., Cavalcante, C., Nepomuceno, J., Lago, L., Ruberg, N., and Lifschitz, S. (2024). Contrato360: uma aplicacção de perguntas e respostas usando modelos de linguagem, documentos e bancos de dados. In Simp´osio Brasileiro de Banco de Dados (SBBD), pages 155–166. SBC.
|
|
12 |
Shen, W., Wang, J., and Han, J. (2014). Entity linking with a knowledge base: Issues, techniques, and solutions. IEEE Transactions on Knowledge and Data Engineering, 27(2):443–460.
|
|
13 |
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
|
|
14 |
Wang, M.,Wang, M., Xu, X., Yang, L., Cai, D., and Yin, M. (2023). Unleashing chatgpt’s power: A case study on optimizing information retrieval in flipped classrooms via prompt engineering. IEEE Transactions on Learning Technologies.
|
|
15 |
Wang, X., He, X.,Wang, M., Feng, F., and Chua, T.-S. (2019). Neural graph collaborative filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and development in Information Retrieval, pages 165–174.
|
|
16 |
White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., and Schmidt, D. C. (2023). A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint rXiv:2302.11382.
|
|
17 |
Zhang, S., Yao, L., Sun, A., and Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM computing surveys (CSUR), 52(1):1–38.
|
|