SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Mariza Ferro(mariza.ferro@gmail.com)
2 Eduardo Bezerra(ebezerra@cefet-rj.br)
3 Eduardo Ogasawara(eogasawara@ieee.org)
4 Nilton Moraes(nilton.moraes@squitter.com.br )
5 Fábio Porto(fabio@lncc.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 M. Aires, J. L. F. de Oliveira, J. M. de Castro Junior, M. M. F. de Oliveira, and N. F. F. Ebecken. Numerical simulation of the atmosphere related to landslides triggered by heavy rainfalls. Engevista, 19(1):37–64, 2017.
2 T. Buch-larsen, J. P. Nielsen, M. Guille ́n, and C. Bolance ́. Kernel density estimation for heavy-tailed distributions using the champernowne transformation. Statistics, 39(6): 503–516, 2005. doi: 10.1080/02331880500439782.
3 F. daSilva. Projeto pesquisa operacional, 2019. Internal Report, in PT.
4 C. Dereczynski, R. Calado, and A. Barros. Extreme rainfall in the city of rio de janeiro: History from the 19th century. Anua ́rio do Instituto de Geocieˆncias - UFRJ, 40:17–30, 09 2017. doi: 10.11137/2017 2 17 30.
5 R. N. d’Orsi, N. M. Paes, M. A. Magalha ̃es, R. da Silva Coelho, L. R. da Silva Junior, and L. R. S. Valente. Os 50 maiores acidentes geolO ́gico-geotE ́cnicos na cidade do rio de janeiro entre 1966 e 2016. http://alertario.rio.rj.gov. br/wp-content/uploads/2017/01/PDF_ESTRUTURA-DO-LIVRETO_ 50-MAIORES-ACIDENTES-_A5_.pdf, 2017. Accessed: 2022-06-24.
6 M. Farazmand and T. Sapsis. Extreme events: Mechanisms and prediction. Applied Mechanics reviews, 71(5), Sept. 2019. doi: https://doi.org/10.1115/1.4042065. B. Gates. How to avoid a Climate Disaster: The Solutions We Have and the Breakth- roughs We Need. Random House Large Print Publishing, 2021.
7 L. Haans and A. Ferreira. Extreme Value Theory An Introduction. Springer, 2006. ISBN 978-0-387-34471-3.
8 V. Lucarini, D. Faranda, A. de Freitas, J. de Freitas, J. Holland, T. Kuna, M. Nicol, M. Todd, and S. Vaienti. Extremes and Recurrence in Dynamical Systems. Wiley, 2016. ISBN 978-1-118-63219-2.
9 A. Luiz-Silva, W.and Oscar-Ju ́nior. Climate extremes related with rainfall in the state of rio de janeiro, brazil: a review of climatological characteristics and recorded trends. Nat Hazards, (10), 2022. doi: https://doi.org/10.1007/s11069-022-05409-5. M. Mudelsee. Extreme Value Time Series. Springer, 2010.
10 F. Porto, M. Ferro, E. Ogasawara, T. Moeda, C. D. Tenorio de Barros, A. Chaves Silva, R. Zorrilla, R. Silva Pereira, R. Nascimento Castro, J. V. Silva, R. Salles, A. J. Fon- seca, J. Hermsdorff, M. Magalha ̃es, V. Sa ́, A. A. Simo ̃es, C. Cardoso, and E. Bezerra. Machine learning approaches to extreme weather events forecast in urban areas: Chal- lenges and initial results. Supercomputing Frontiers and Innovations, 9(1):49–73, May 2022. doi: 10.14529/jsfi220104.
11 H. Touchette. A basic introduction to large deviations: Theory, applications, simulations. 2011. doi: 10.48550/ARXIV.1106.4146.
12 Y. Wang, E. Coning, A. Harou, W. Jacobs, P. Joe, L. Nikitina, R. Roberts, J. Wang, J. Wilson, A. Atencia, B. Bica, B. Brown, S. Goodmann, A. Kann, P.-w. Li, I. Monterio, F. Schmid, A. Seed, and J. Sun. Guidelines for Nowcasting Techniques. 11 2017. ISBN 978-92-63-11198-2.
13 G. S. Watson. Extreme values in samples from m-dependent stationary stochastic proces- ses. The Annals of Mathematical Statistics, 25(4):798–800, 1954.
14 Y. Xiang, J. Ma, and X. Wu. A precipitation nowcasting mechanism for real-world data based on machine learning. Mathematical Problems in Engineering, 2020:1–11, 11 2020. doi: 10.1155/2020/8408931.