1 |
M. Aires, J. L. F. de Oliveira, J. M. de Castro Junior, M. M. F. de Oliveira, and N. F. F. Ebecken. Numerical simulation of the atmosphere related to landslides triggered by heavy rainfalls. Engevista, 19(1):37–64, 2017.
|
|
2 |
T. Buch-larsen, J. P. Nielsen, M. Guille ́n, and C. Bolance ́. Kernel density estimation for heavy-tailed distributions using the champernowne transformation. Statistics, 39(6): 503–516, 2005. doi: 10.1080/02331880500439782.
|
|
3 |
F. daSilva. Projeto pesquisa operacional, 2019. Internal Report, in PT.
|
|
4 |
C. Dereczynski, R. Calado, and A. Barros. Extreme rainfall in the city of rio de janeiro: History from the 19th century. Anua ́rio do Instituto de Geocieˆncias - UFRJ, 40:17–30, 09 2017. doi: 10.11137/2017 2 17 30.
|
|
5 |
R. N. d’Orsi, N. M. Paes, M. A. Magalha ̃es, R. da Silva Coelho, L. R. da Silva Junior, and L. R. S. Valente. Os 50 maiores acidentes geolO ́gico-geotE ́cnicos na cidade do rio de janeiro entre 1966 e 2016. http://alertario.rio.rj.gov. br/wp-content/uploads/2017/01/PDF_ESTRUTURA-DO-LIVRETO_ 50-MAIORES-ACIDENTES-_A5_.pdf, 2017. Accessed: 2022-06-24.
|
|
6 |
M. Farazmand and T. Sapsis. Extreme events: Mechanisms and prediction. Applied Mechanics reviews, 71(5), Sept. 2019. doi: https://doi.org/10.1115/1.4042065. B. Gates. How to avoid a Climate Disaster: The Solutions We Have and the Breakth- roughs We Need. Random House Large Print Publishing, 2021.
|
|
7 |
L. Haans and A. Ferreira. Extreme Value Theory An Introduction. Springer, 2006. ISBN 978-0-387-34471-3.
|
|
8 |
V. Lucarini, D. Faranda, A. de Freitas, J. de Freitas, J. Holland, T. Kuna, M. Nicol, M. Todd, and S. Vaienti. Extremes and Recurrence in Dynamical Systems. Wiley, 2016. ISBN 978-1-118-63219-2.
|
|
9 |
A. Luiz-Silva, W.and Oscar-Ju ́nior. Climate extremes related with rainfall in the state of rio de janeiro, brazil: a review of climatological characteristics and recorded trends. Nat Hazards, (10), 2022. doi: https://doi.org/10.1007/s11069-022-05409-5. M. Mudelsee. Extreme Value Time Series. Springer, 2010.
|
|
10 |
F. Porto, M. Ferro, E. Ogasawara, T. Moeda, C. D. Tenorio de Barros, A. Chaves Silva, R. Zorrilla, R. Silva Pereira, R. Nascimento Castro, J. V. Silva, R. Salles, A. J. Fon- seca, J. Hermsdorff, M. Magalha ̃es, V. Sa ́, A. A. Simo ̃es, C. Cardoso, and E. Bezerra. Machine learning approaches to extreme weather events forecast in urban areas: Chal- lenges and initial results. Supercomputing Frontiers and Innovations, 9(1):49–73, May 2022. doi: 10.14529/jsfi220104.
|
|
11 |
H. Touchette. A basic introduction to large deviations: Theory, applications, simulations. 2011. doi: 10.48550/ARXIV.1106.4146.
|
|
12 |
Y. Wang, E. Coning, A. Harou, W. Jacobs, P. Joe, L. Nikitina, R. Roberts, J. Wang, J. Wilson, A. Atencia, B. Bica, B. Brown, S. Goodmann, A. Kann, P.-w. Li, I. Monterio, F. Schmid, A. Seed, and J. Sun. Guidelines for Nowcasting Techniques. 11 2017. ISBN 978-92-63-11198-2.
|
|
13 |
G. S. Watson. Extreme values in samples from m-dependent stationary stochastic proces- ses. The Annals of Mathematical Statistics, 25(4):798–800, 1954.
|
|
14 |
Y. Xiang, J. Ma, and X. Wu. A precipitation nowcasting mechanism for real-world data based on machine learning. Mathematical Problems in Engineering, 2020:1–11, 11 2020. doi: 10.1155/2020/8408931.
|
|