1 |
Beckmann, M., McGuire, C. B., Winsten, C. B., and Koopmans, T. C. Studies in the economics of transportation. The Economic Journal 67 (265): 116–118, 1957.
|
|
2 |
Braess, D. Über ein paradoxon aus der verkehrsplanung. Unternehmensforschung Operations Research - Recherche Opérationnelle vol. 12, pp. 258–268, 12, 1968.
|
|
3 |
Colby, M., Duchow-Pressley, T., Chung, J. J., and Tumer, K. Local approximation of difference evaluation functions. In Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, pp. 521–529, 2016.
|
|
4 |
Hearn, D. W. and Ramana, M. V. pp. 109–124. In P. Marcotte and S. Nguyen (Eds.), Solving Congestion Toll Pricing Models. Springer US, Boston, MA, pp. 109–124, 1998.
|
|
5 |
Joshi, D. J., Kale, I., Gandewar, S., Korate, O., Patwari, D., and Patil, S. Reinforcement learning: A survey. Journal of Artificial Intelligence Research vol. 1311 AISC, pp. 297–308, 1996.
|
|
6 |
Knuth, D. E. Two notes on notation, 1992.
|
|
7 |
Leape, J. The london congestion charge. Journal of Economic Perspectives vol. 20, pp. 157–176, 9, 2006.
|
|
8 |
Mirzaei, H., Sharon, G., Boyles, S., Givargis, T., and Stone, P. Enhanced delta-tolling: Traffic optimization via policy gradient reinforcement learning. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC). pp. 47–52, 2018.
|
|
9 |
Pigou, A. C. The Economics of Welfare. Routledge, 1920.
|
|
10 |
Ramos, G. de. O. Regret Minimisation and System-Efficiency in Route Choice. Ph.D. thesis, Universidade Federal do Rio Grande do Sul, Brazil, 2018.
|
|
11 |
Ramos, G. de. O., da Silva, B. C., Rădulescu, R., Bazzan, A. L. C., and Nowé, A. Toll-based reinforcement learning for efficient equilibria in route choice. Knowledge Engineering Review , 2020.
|
|
12 |
Ramos, G. de. O., Rădulescu, R., Nowé, A., and Tavares, A. R. Toll-based learning for minimising congestion under heterogeneous preferences. In Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, and G. Sukthankar (Eds.). IFAAMAS, Auckland, New Zealand, pp. 1098–1106, 2020.
|
|
13 |
Sharon, G., Hanna, J. P., Rambha, T., Levin, M. W., Albert, M., Boyles, S. D., and Stone, P. Real-time adaptive tolling scheme for optimized social welfare in traffic networks. AAMAS ’17. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, pp. 828–836, 2017.
|
|
14 |
Somuyiwa, A. O., Fadare, S. O., and Ayantoyinbo, B. B. Analysis of the cost of traffic congestion on worker’s pro- ductivity in a mega city of a developing economy. International Review of Management and Business Research 4 (3): 644, 2015.
|
|
15 |
Stefanello, F., Buriol, L. S., Hirsch, M. J., Pardalos, P. M., Querido, T., Resende, M. G. C., and Ritt, M. On the minimization of traffic congestion in road networks with tolls. Annals of Operations Research 249 (1): 119–139, Feb, 2017.
|
|
16 |
Sutton, R. S. and Barto, A. G. Reinforcement learning: An introduction. IEEE Transactions on Neural Networks 9 (5): 1054–1054, 1998.
|
|
17 |
Watkins, C. J. C. H. Learning from Delayed Rewards. Cambridge University, 1989.
|
|
18 |
Watkins, C. J. C. H. and Dayan, P. Q-learning. Machine Learning 1992 8:3 vol. 8, pp. 279–292, 5, 1992.
|
|
19 |
Wolpert, D. H. and Tumer, K. An introduction to collective intelligence. CoRR vol. cs.LG/9908014, 1999.
|
|
20 |
Yen, J. Y. Finding the k shortest loopless paths in a network. Management Science 17 (11): 712–716, 1971.
|
|
21 |
Zhong, N., Cao, J., and Wang, Y. Traffic congestion, ambient air pollution, and health: Evidence from driving restrictions in Beijing. Journal of the Association of Environmental and Resource Economists 4 (3): 821–856, 2017.
|
|