SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Matheus da Rocha(matheus.bonfim.rocha@gmail.com)
2 Bruno Marcato(marcato.2001@alunos.utfpr.edu.br)
3 Wally auf der Strasse(wallystrasse@hotmail.com)
4 Maiara Taniguchi(maaymt@gmail.com)
5 José Luis Seixas Jr(jose.junior@ies.unespar.edu.br)
6 Daniel Campos(danielcampos@utfpr.edu.br)
7 Rafael Mantovani(rafaelmantovani@utfpr.edu.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Aggarwal, C. C. Neural Networks and Deep Learning: A Textbook. Springer International Publishing, Cham, 2018.
2 Aguiar, G. J., Mantovani, R. G., Mastelini, S. M., de Carvalho, A. C., Campos, G. F., and Junior, S. B. A meta-learning approach for selecting image segmentation algorithm. Pattern Recognition Letters vol. 128, pp. 480–487, 2019.
3 Ahalya, R. K. and Snekhalatha, U. Cnn transformer for the automated detection of rheumatoid arthritis in hand thermal images. In Artificial Intelligence over Infrared Images for Medical Applications. Lecture Notes in Computer Science, vol. 15279. Springer, Cham, pp. 29–40, 2025.
4 Almigdad, A., Mustafa, A., Alazaydeh, S., Alshawish, M., Bani Mustafa, M., and Alfukaha, H. Bone fracture patterns and distributions according to trauma energy. Advances in Orthopedics 2022 (1): 8695916, 2022.
5 Bixel, M., Sivaraj, K., Timmen, M., Mohanakrishnan, V., Aravamudhan, A., Adams, S., and Adams, R. Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration. Nature Communications 15 (1): 4575, 2024.
6 Cakir, M., Tulum, G., Cuce, F., Yilmaz, K., Aralasmak, A., Isik, M., and Canbolat, H. Differential diagnosis of diabetic foot osteomyelitis and charcot neuropathic osteoarthropathy with deep learning methods. Journal of Imaging Informatics in Medicine 37 (5): 2454–2465, 2024.
7 der Strasse, W. A., Campos, D. P., Mendonça, C. J. A., et al. Detecting bone lesions in the emergency room with medical infrared thermography. BioMedical Engineering OnLine 21 (1): 35, 2022.
8 der Strasse, W. A., Campos, D. P., Mendonça, C. J. A., Soni, J. F., Mendes, J., and Nohama, P. Evaluation of tibia bone healing by infrared thermography: A case study. Journal of Multidisciplinary Healthcare vol. 14, pp. 3161–3175, 2021.
9 der Strasse, W. A., Campos, D. P., Mendonça, C. J. A., Soni, J. F., Tuon, F., Mendes, J., and Nohama, P. Evaluating physiological progression of chronic tibial osteomyelitis using infrared thermography. Research on Biomedical Engineering, 2022.
10 Ergene, M. C., Bayrak, A., and and, M. C. A new deep learning based end-to-end pipeline for hamstring injury detection in thermal images of professional football player. Quantitative InfraRed Thermography Journal 0 (0): 1–18, 2024.
11 Etehadtavakol, M., Sirati-Amsheh, M., Moallem, G., and Ng, E. Enhancing thyroid nodule classification: A comprehensive analysis of feature selection in thermography. Infrared Physics & Technology, 2025.
12 Gawade, S., Bhansali, A., Patil, K., and Shaikh, D. Application of the convolutional neural networks and supervised deep-learning methods for osteosarcoma bone cancer detection. Healthcare Analytics vol. 3, pp. 100153, 2023.
13 Khandakar, A., Chowdhury, M., Reaz, M., Ali, S., Hasan, M., Kiranyaz, S., and Malik, R. A machine learning model for early detection of diabetic foot using thermogram images. Computers in Biology and Medicine vol. 137, pp. 104838, 2021.
14 Magalhães, C., Tavares, J., Mendes, J., and Vardasca, R. Comparison of machine learning strategies for infrared thermography of skin cancer. Biomedical Signal Processing and Control vol. 69, pp. 102872, 2021.
15 Marsland, S. Machine learning: an algorithmic perspective. CRC press, 2015.
16 Reed, C., Saatchi, R., Burke, D., and Ramlakhan, S. Infrared thermal imaging as a screening tool for paediatric wrist fractures. Medical & Biological Engineering & Computing vol. 58, pp. 1549–1563, 2020.
17 Ribeiro, J., Mileski, M., Seixas Junior, J. L., Carvalho, L. F., and Mantovani, R. G. Image classification for precision agriculture: A coffee study case. In Anais do Computer on the Beach 2024, 2024.
18 Senalp, F. and Ceylan, M. Effects of the deep learning-based super-resolution method on thermal image classification applications. Multimedia Tools and Applications 81 (7): 9313–9330, 2022.
19 Shobayo, O., Saatchi, R., and Ramlakhan, S. Convolutional neural network to classify infrared thermal images of fractured wrists in pediatrics. Healthcare 12 (10): 994, 2024.
20 Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations. CoRR, San Diego, CA, USA, 2015.
21 Taspinar, Y. S. Light weight convolutional neural network and low-dimensional images transformation approach for classification of thermal images. Case Studies in Thermal Engineering vol. 41, pp. 102670, 2023.
22 Trejo-Chavez, O., Amezquita-Sanchez, J. P., Huerta-Rosales, J. R., et al. Automatic knee injury identification through thermal image processing and convolutional neural networks. Electronics 11 (23), 2022.