1 |
M. Baak, R. Koopman, H. Snoek, and S. Klous. A new correlation coefficient between categorical, ordinal and interval variables with pearson characteristics. Computational Statistics & Data Analysis, 152:107043, 2020.
|
|
2 |
S. Barocas, M. Hardt, and A. Narayanan. Fairness and machine learning: Limitations and opportunities. MIT Press, 2023.
|
|
3 |
B. Becker and R. Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI: https://doi.org/10.24432/C5XW20.
|
|
4 |
J. Berkson. Application of the logistic function to bio-assay. Journal of the American statistical association, 39(227):357–365, 1944.
|
|
5 |
S. Caton and C. Haas. Fairness in machine learning: A survey. ACM Comput. Surv., 56 (7), apr 2024. ISSN 0360-0300.
|
|
6 |
P. Dhar, J. Gleason, A. Roy, C. D. Castillo, and R. Chellappa. Pass: protected attribute suppression system for mitigating bias in face recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 15087–15096, 2021.
|
|
7 |
T. Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874, 2006.
|
|
8 |
F. Kamiran and T. Calders. Classifying without discriminating. In 2009 2nd international conference on computer, control and communication, pages 1–6. IEEE, 2009.
|
|
9 |
M. Kearns and A. Roth. The ethical algorithm: The science of socially aware algorithm design. Oxford University Press, 2019.
|
|
10 |
M. Koivisto and K. Sood. Exact bayesian structure discovery in bayesian networks. The Journal of Machine Learning Research, 5:549–573, 2004.
|
|
11 |
M. Langenkamp, A. Costa, and C. Cheung. Hiring fairly in the age of algorithms. arXiv preprint arXiv:2004.07132, 2020.
|
|
12 |
J. Larson, M. Roswell, and V. Atlidakis. Compas. https://github.com/propublica/compas-analysis, 2016. July 29, 2022.
|
|
13 |
T. Le Quy, A. Roy, V. Iosifidis, W. Zhang, and E. Ntoutsi. A survey on datasets for fairness-aware machine learning. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 12(3):e1452, 2022.
|
|
14 |
V. G. Martini. Análise de equidade em algoritmos de ia na área da saúde: um estudo sobre viés de dados, medidas de pós-processamento e correlações de atributos. 2023.
|
|
15 |
S. Moro, P. Cortez, and P. Rita. A data-driven approach to predict the success of bank telemarketing. Decision Support Systems, 62:22–31, 2014.
|
|
16 |
U. E. Orji, C. H. Ugwuishiwu, J. C. Nguemaleu, and P. N. Ugwuanyi. Machine learning models for predicting bank loan eligibility. In 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), pages 1–5. IEEE, 2022.
|
|
17 |
J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan kaufmann, 1988.
|
|
18 |
D. Pedreshi, S. Ruggieri, and F. Turini. Discrimination-aware data mining. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 560–568, 2008
|
|
19 |
E. Pitoura, K. Stefanidis, and G. Koutrika. Fairness in rankings and recommenders: Models, methods and research directions. In 2021 IEEE 37th International Conference on Data Engineering (ICDE), pages 2358–2361. IEEE, 2021.
|
|
20 |
The US EEOC. Uniform guidelines on employee selection procedures, March 2, 1979.
|
|
21 |
L. F. Wightman. Lsac national longitudinal bar passage study. lsac research report series. 1998.
|
|