1 |
Ponte, C., Carmona, H. A., Oliveira, E. A., Caminha, C., Lima, A. S., Andrade Jr, J. S., and Furtado, V.
Tracing contacts to evaluate the transmission of covid-19 from highly exposed individuals in public transportation.
Scientific Reports 11 (1): 24443, 2021.
|
|
2 |
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., et al. Tensorflow: a system for large-scale machine learning. In Osdi (2016). Vol. 16. Savannah, GA, USA,
USENIX Association, USA, pp. 265–283, 2016.
|
|
3 |
Ponte, C., Melo, H. P. M., Caminha, C., Andrade Jr, J. S., and Furtado, V. Traveling heterogeneity in public
transportation. EPJ Data Science 7 (1): 1–10, 2018.
|
|
4 |
Abolghasemi, M., Beh, E., Tarr, G., and Gerlach, R. Demand forecasting in supply chain: The impact of demand
volatility in the presence of promotion. Computers & Industrial Engineering vol. 142, pp. 106380, 2020.
|
|
5 |
Salles, R., Belloze, K., Porto, F., Gonzalez, P. H., and Ogasawara, E. Nonstationary time series transformation methods: An experimental review. Knowledge-Based Systems vol. 164, pp. 274–291, 2019.
|
|
6 |
Aghabozorgi, S., Shirkhorshidi, A. S., and Wah, T. Y. Time-series clustering–a decade review. Information
systems vol. 53, pp. 16–38, 2015.
|
|
7 |
Shynkevich, Y., McGinnity, T. M., Coleman, S. A., Belatreche, A., and Li, Y. Forecasting price movements
using technical indicators: Investigating the impact of varying input window length. Neurocomputing vol. 264, pp.
71–88, 2017.
|
|
8 |
Bergström, C. and Hjelm, O. Impact of time steps on stock market prediction with lstm, 2019.
|
|
9 |
Taieb, S. B., Bontempi, G., Atiya, A. F., and Sorjamaa, A. A review and comparison of strategies for multi-step
ahead time series forecasting based on the nn5 forecasting competition. Expert systems with applications 39 (8):
7067–7083, 2012.
|
|
10 |
Bomfim, R., Pei, S., Shaman, J., Yamana, T., Makse, H. A., Andrade Jr, J. S., Lima Neto, A. S., and
Furtado, V. Predicting dengue outbreaks at neighbourhood level using human mobility in urban areas. Journal of
the Royal Society Interface 17 (171): 20200691, 2020.
|
|
11 |
Ughi, R., Lomurno, E., and Matteucci, M. Two steps forward and one behind: Rethinking time series forecasting
with deep learning. arXiv preprint arXiv:2304.04553 , 2023.
|
|
12 |
Breiman, L. Random forests. Machine learning vol. 45, pp. 5–32, 2001.
|
|
13 |
Wolpert, D. H. Stacked generalization. Neural networks 5 (2): 241–259, 1992.
|
|
14 |
Caminha, C., Furtado, V., Pinheiro, V., and Ponte, C. Graph mining for the detection of overcrowding and
waste of resources in public transport. Journal of Internet Services and Applications 9 (1): 1–11, 2018.
|
|
15 |
Cheng, H., Tan, P.-N., Gao, J., and Scripps, J. Multistep-ahead time series prediction. In Advances in Knowledge
Discovery and Data Mining: 10th Pacific-Asia Conference, PAKDD 2006, Singapore, April 9-12, 2006. Proceedings
10. Springer, Singapore, pp. 765–774, 2006.
|
|
16 |
Cover, T. and Hart, P. Nearest neighbor pattern classification. IEEE transactions on information theory 13 (1):
21–27, 1967.
|
|
17 |
De Gooijer, J. G. and Hyndman, R. J. 25 years of time series forecasting. International journal of forecasting 22 (3):
443–473, 2006.
|
|
18 |
Drucker, H., Burges, C. J., Kaufman, L., Smola, A., and Vapnik, V. Support vector regression machines.
Advances in neural information processing systems vol. 9, pp. 155–161, 1996.
|
|
19 |
Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., and Muller, P.-A. Adversarial attacks on deep neural
networks for time series classification. In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE,
Budapest, pp. 1–8, 2019.
|
|
20 |
Freund, Y., Schapire, R. E., et al. Experiments with a new boosting algorithm. In icml. Vol. 96. Citeseer, New
Jersey, pp. 148–156, 1996.
|
|
21 |
Friedman, J. H. Greedy function approximation: a gradient boosting machine. Annals of statistics 29 (5): 1189–1232,
2001.
|
|
22 |
Galton, F. Natural inheritance. Vol. 42. Macmillan, London, 1889.
|
|
23 |
Hamzaçebi, C., Akay, D., and Kutay, F. Comparison of direct and iterative artificial neural network forecast
approaches in multi-periodic time series forecasting. Expert systems with applications 36 (2): 3839–3844, 2009.
|
|
24 |
Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural computation 9 (8): 1735–1780, 1997.
|
|
25 |
Hoerl, A. E. and Kennard, R. W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12 (1): 55–67, 1970.
|
|
26 |
Huber, J. and Stuckenschmidt, H. Daily retail demand forecasting using machine learning with emphasis on
calendric special days. International Journal of Forecasting 36 (4): 1420–1438, 2020.
|
|
27 |
Kreinovich, V., Nguyen, H. T., and Ouncharoen, R. How to estimate forecasting quality: A system-motivated
derivation of symmetric mean absolute percentage error (smape) and other similar characteristics. Departmental
Technical Reports (CS), 2014.
|
|
28 |
Lim, B. and Zohren, S. Time-series forecasting with deep learning: a survey. Philosophical Transactions of the Royal
Society A 379 (2194): 20200209, 2021.
|
|
29 |
Liu, Y., Wang, Z., Yu, X., Chen, X., and Sun, M. Memory-based transformer with shorter window and longer
horizon for multivariate time series forecasting. Pattern Recognition Letters vol. 160, pp. 26–33, 2022.
|
|
30 |
Lovrić, M., Milanović, M., and Stamenković, M. Algoritmic methods for segmentation of time series: An overview.
Journal of Contemporary Economic and Business Issues 1 (1): 31–53, 2014.
|
|
31 |
Makridakis, S. Accuracy measures: theoretical and practical concerns. International journal of forecasting 9 (4):
527–529, 1993.
|
|
32 |
Munir, M., Siddiqui, S. A., Dengel, A., and Ahmed, S. Deepant: A deep learning approach for unsupervised
anomaly detection in time series. Ieee Access vol. 7, pp. 1991–2005, 2018.
|
|
33 |
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. Scikit-learn: Machine learning in python. the Journal of machine
Learning research vol. 12, pp. 2825–2830, 2011.
|
|
34 |
Ponte, C., Carmona, H. A., Oliveira, E. A., Caminha, C., Lima, A. S., Andrade Jr, J. S., and Furtado, V.
Tracing contacts to evaluate the transmission of covid-19 from highly exposed individuals in public transportation.
Scientific Reports 11 (1): 24443, 2021.
|
|
35 |
Ponte, C., Melo, H. P. M., Caminha, C., Andrade Jr, J. S., and Furtado, V. Traveling heterogeneity in public
transportation. EPJ Data Science 7 (1): 1–10, 2018.
|
|
36 |
Salles, R., Belloze, K., Porto, F., Gonzalez, P. H., and Ogasawara, E. Nonstationary time series transformation methods: An experimental review. Knowledge-Based Systems vol. 164, pp. 274–291, 2019.
|
|
37 |
Shynkevich, Y., McGinnity, T. M., Coleman, S. A., Belatreche, A., and Li, Y. Forecasting price movements
using technical indicators: Investigating the impact of varying input window length. Neurocomputing vol. 264, pp.
71–88, 2017.
|
|
38 |
Taieb, S. B., Bontempi, G., Atiya, A. F., and Sorjamaa, A. A review and comparison of strategies for multi-step
ahead time series forecasting based on the nn5 forecasting competition. Expert systems with applications 39 (8):
7067–7083, 2012.
|
|
39 |
Ughi, R., Lomurno, E., and Matteucci, M. Two steps forward and one behind: Rethinking time series forecasting
with deep learning. arXiv preprint arXiv:2304.04553 , 2023.
|
|
40 |
Wolpert, D. H. Stacked generalization. Neural networks 5 (2): 241–259, 1992.
|
|