SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Matheus Ota(matheus.ota@students.ic.unicamp.br)
2 Flávio Miyazawa(fkm@ic.unicamp.br)
3 Phablo Moura(phablo@dcc.ufmg.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 de Aragão, M. P. and Uchoa, E. (1999). The γ-connected assignment problem. European Journal of Operational Research, 118(1):127–138.
2 Dyer, M. and Frieze, A. (1985). On the complexity of partitioning graphs into connected subgraphs. Discrete Applied Mathematics, 10(2):139–153.
3 Lovász, L. (1977). A homology theory for spanning tress of a graph. Acta Mathematica Academiae Scientiarum Hungarica, 30:241–251.
4 Matić, D. (2014). A mixed integer linear programming model and variable neighborhood search for maximally balanced connected partition problem. Applied Mathematics and Computation, 237:85–97.
5 Miyazawa, F. K., Moura, P. F., Ota, M. J., and Wakabayashi, Y. (2021). Partitioning a graph into balanced connected classes: Formulations, separation and experiments. European Journal of Operational Research, 293(3):826–836.
6 Miyazawa, F. K., Moura, P. F. S., Ota, M. J., and Wakabayashi, Y. (2020). Cut and flow formulations for the balanced connected k-partition problem. In International Symposium on Combinatorial Optimization, pages 128–139. Springer.
7 Ota, M. J. (2020). The balanced connected k-partition problem : polyhedra and algorithms. Master’s thesis, Universidade Estadual de Campinas.
8 Zhou, X., Wang, H., Ding, B., Hu, T., and Shang, S. (2019). Balanced connected task allocations for multi-robot systems: An exact flow-based integer program and an approximate tree-based genetic algorithm. Expert Systems with Applications, 116:10–20.