SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Pedro G. K. Bertella(pedrobertella@alunos.utfpr.edu.br)
2 Yuri K. Lopes(yuri.lopes@udesc.br)
3 Rafael A. P. Oliveira(raoliveira@utfpr.edu.br)
4 Anderson C. Carniel(accarniel@ufscar.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Bandi, N., Sun, C., Agrawal, D., and El Abbadi, A. (2007). Fast computation of spatial selections and joins using graphics hardware. Information Systems, 32(8):1073 – 1100.
2 Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. (1990). The R*-tree: An efficient and robust access method for points and rectangles. In ACM SIGMOD Int. Conf. on Management of Data, pages 322–331.
3 Brinkhoff, T., Horn, H., Kriegel, H.-P., and Schneider, R. (1993). A storage and access architecture for efficient query processing in spatial database systems. In Int. Symp. on Spatial Databases, pages 357–376.
4 Brinkhoff, T., Kriegel, H. ., and Schneider, R. (1993). Comparison of approximations of complex objects used for approximation-based query processing in spatial database systems. In Int. Conf. on Data Engineering, pages 40–49.
5 Brinkhoff, T. and Kriegel, H.-P. (1994). Approximations for a multi-step processing of spatial joins. In IGIS ’94: Geographic Information Systems, pages 25–34.
6 Brinkhoff, T., Kriegel, H.-P., Schneider, R., and Seeger, B. (1994). Multi-step processing of spatial joins. In ACM SIGMOD Int. Conf. on Management of Data, pages 197–208.
7 Carniel, A. C. (2020). Spatial information retrieval in digital ecosystems: A comprehensive survey. In Int. Conf. on Management of Digital EcoSystems, pages 10–17.
8 Carniel, A. C., Ciferri, R. R., and Ciferri, C. D. A. (2020). FESTIval: A versatile framework for conducting experimental evaluations of spatial indices. MethodsX, 7:1–19.
9 Egenhofer, M. J. and Herring, J. R. (1994). Categorizing binary topological relations between regions, lines and points in geographic databases. In The 9-Intersection: Formalism and Its Use for Natural-Language Spatial Predicates.
10 Fevgas, A., Akritidis, L., Bozanis, P., and Manolopoulos, Y. (2019). Indexing in flash storage devices: a survey on challenges, current approaches, and future trends. The VLDB Journal, 29:273–311.
11 Gaede, V. and Gunther, O. (1998). Multidimensional access methods. ¨ ACM Computing Surveys, 30(2):170–231.
12 Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In ACM SIGMOD Int. Conf. on Management of Data, pages 47–57.
13 Kothuri, R. K. and Ravada, S. (2001). Efficient processing of large spatial queries using interior approximations. In Int. Conf. on Advances in Spatial and Temporal Databases, pages 404–421.
14 Pandey, V., Kipf, A., Neumann, T., and Kemper, A. (2018). How good are modern spatial analytics systems? VLDB Endowment, 11(11):1661–1673.
15 Pandey, V., van Rene, A., Kipf, A., and Kemper, A. (2020). How good are modern spatial libraries? Data Science and Engineering, 6:192–208.
16 Papadias, D., Sellis, T., Theodoridis, Y., and Egenhofer, M. J. (1995). Topological relations in the world of minimum bounding rectangles: A study with R-trees. In ACM SIGMOD Int. Conf. on Management of Data, pages 92–103.
17 Schneider, M. and Behr, T. (2006). Topological relationships between complex spatial objects. ACM Transactions on Database Systems, 31(1):39–81.
18 Sidlauskas, D., Chester, S., Tzirita Zacharatou, E., and Ailamaki, A. (2018). Improving spatial data processing by clipping minimum bounding boxes. In Int. Conf. on Data Engineering, pages 425–436.
19 Su, W., Wei, H., Yeh, J., and Chen, W. (2017). An efficient approach based on polygon approximation to query spatial data on digital archiving system. In Int. Conf. on Applied System Innovation, pages 389–392.