1 |
Arancibia, G. V., Bustamante, O. P., Vigneau, G. H., Allende-Cid, H., Fuentelaba, G. S., and Nieto, V. A. (2021). Estimation of moisture content in thickened tailings dams: Machine learning techniques applied to remote sensing images. IEEE Access, 9:16988–16998.
|
|
2 |
Gibril, M. B. A., Idrees, M. O., Yao, K., and Shafri, H. Z. M. (2018). Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data. Journal of Applied Remote Sensing, 12.
|
|
3 |
Jamali, A. (2019). Evaluation and comparison of eight machine learning models in land use/land cover mapping using landsat 8 oli: a case study of the northern region of iran. SN Applied Sciences, 1.
|
|
4 |
Jamali, A. (2021). Land use land cover mapping using advanced machine learning classifiers. Ekologia Bratislava, 40:286–300.
|
|
5 |
Keshtkar, H., Voigt, W., and Alizadeh, E. (2017). Land-cover classification and analysis of change using machine-learning classifiers and multi-temporal remote sensing imagery. Arabian Journal of Geosciences, 10.
|
|
6 |
Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., and Linkman, S. (2009). Systematic literature reviews in software engineering–a systematic literature review. Information and software technology, 51(1):7–15.
|
|
7 |
Lang, N., Jetz, W., Schindler, K., and Wegner, J. D. (2022). A high-resolution canopy height model of the earth. arXiv preprint arXiv:2204.08322.
|
|
8 |
Langford, Z. L., Kumar, J., Hoffman, F. M., Breen, A. L., and Iversen, C. M. (2019). Arctic vegetation mapping using unsupervised training datasets and convolutional neural networks. Remote Sensing, 11(1):69.
|
|
9 |
Liu, X. and Li, Y. (2021). Research on classification method of medium resolution remote sensing image based on machine learning. Lecture Notes in Computer Science, 12753 LNCS:164–173. deep learning.
|
|
10 |
Matinfar, H. R., Maghsodi, Z., Mousavi, S. R., and Rahmani, A. (2021). Evaluation and prediction of topsoil organic carbon using machine learning and hybrid models at a field-scale. Catena, 202.
|
|
11 |
Molinaro, C. A. and Leal, A. A. F. (2018). Big data, machine learning and environmental preservation: Technological instruments in defense of the environment. VEREDAS DO DIREITO, 15(31):201–224.
|
|
12 |
Naimi, S., Ayoubi, S., Demattˆe, J. A. M., Zeraatpisheh, M., Amorim, M. T. A., and Mello, F. (2021). Spatial prediction of soil surface properties in an arid region using synthetic soil image and machine learning. Geocarto International.
|
|
13 |
Rostaminia, M., Rahmani, A., Mousavi, S. R., Taghizadeh-Mehrjardi, R., and Maghsodi, Z. (2021). Spatial prediction of soil organic carbon stocks in an arid rangeland using machine lefarning algorithms. Environmental Monitoring and Assessment, 193.
|
|
14 |
Seufitelli, D. B., Moura, A. F. C., Fernandes, A. C., Siqueira, K. M., Brand ão, M. A., and Moro, M. M. (2021). Forense digital e bancos de dados: um survey. In Simpósio Brasileiro de Bancos de Dados (SBBD), pages 307–312. SBC.
|
|
15 |
Vasilakos, C., Kavroudakis, D., and Georganta, A. (2020). Machine learning classification ensemble of multitemporal sentinel-2 images: The case of a mixed mediterranean ecosystem. Remote Sensing, 12.
|
|