1 |
Angelo, A. (2016). A brief introduction to quadtrees and their applications. In Style file from the 28th Canadian Conference on Computational Geometry
|
|
2 |
Basu, D. and Sengupta, S. (2015). A novel quad tree based data clustering technique. In 2015 IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), pages 157–162. IEEE.
|
|
3 |
Kaufman, L. and Rousseeuw, P. J. (2009). Finding groups in data: an introduction to cluster analysis. John Wiley & Sons.
|
|
4 |
MacQueen, J. et al. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages 281–297. Oakland, CA, USA.
|
|
5 |
Montero-Manso, P. and Hyndman, R. J. (2021). Principles and algorithms for forecasting groups of time series: Locality and globality. International Journal of Forecasting, 37(4):1632–1653.
|
|
6 |
Ribeiro, V., Pena, E. H., Saldanha, R., Akbarinia, R., Valduriez, P., Khan, F. A., Stoyanovich, J., and Porto, F. (2023). Subset modelling: A domain partitioning strategy for data-efficient machine-learning. In Anais do XXXVIII Simpósio Brasileiro de Bancos de Dados, pages 318–323. SBC.
|
|
7 |
Sakoe, H. and Chiba, S. (2003). Dynamic programming algorithm optimization for spoken word recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1):43–49.
|
|
8 |
Singhal, A. and Seborg, D. E. (2005). Clustering multivariate time-series data. Journal of Chemometrics: A Journal of the Chemometrics Society, 19(8):427–438.
|
|
9 |
Zorrilla Coz, R. M. (2021). A Spatial-Temporal Aware Model Selection for Time Series Analysis. PhD thesis, Laboratório Nacional de Computação Cientifica, Petrópolis, RJ, Brasil. Thesis for the degree of Doctor of Sciences in Computational Modeling.
|
|