1 |
Abu-Salih, B., Wongthongtham, P., Zhu, D., Chan, K. Y., Rudra, A., Abu-Salih, B.,Wongthongtham, P., Zhu, D., Chan, K. Y., and Rudra, A. (2021). Social big data: An overview and applications. Social Big Data Analytics: Practices, Techniques, and Applications, pages 1–14.
|
|
2 |
Akanbi, A. and Masinde, M. (2020). A distributed stream processing middleware framework for real-time analysis of heterogeneous data on big data platform: Case of environmental monitoring. Sensors, 20(11):3166.
|
|
3 |
Alkhamisi, A. O. and Saleh, M. (2020). Ontology opportunities and challenges: Discussions from semantic data integration perspectives. In 2020 6th Conference on Data Science and Machine Learning Applications (CDMA), pages 134–140. IEEE.
|
|
4 |
Analytics, M. (2016). The age of analytics: competing in a data-driven world. McKinsey Global Institute Research.
|
|
5 |
Asano, Y., Herr, D.-F., Ishihara, Y., Kato, H., Nakano, K., Onizuka, M., and Sasaki,Y. (2019). Flexible framework for data integration and update propagation: Systemaspect. In 2019 IEEE International Conference on Big Data and Smart Computing(BigComp), pages 1–5.
|
|
6 |
Barros, M. (2020). Book review: Digital objects, digital subjects: Interdisciplinary perspectives on capitalism, labour and politics in the age of big data.
|
|
7 |
Brown, K. S., Spivak, D. I., and Wisnesky, R. (2019). Categorical data integration for computational science. Computational Materials Science, 164:127–132.
|
|
8 |
Caldiera, V. R. B.-G. and Rombach, H. D. (1994). Goal question metric paradigm.Encyclopedia of software engineering, 1:528–532.
|
|
9 |
Cappuzzo, R., Papotti, P., and Thirumuruganathan, S. (2020). Creating embeddings of heterogeneous relational datasets for data integration tasks. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pages 1335–1349.
|
|
10 |
Cavallo, G., Di Mauro, F., Pasteris, P., Sapino, M. L., and Candan, K. S. (2018).Contextually-enriched querying of integrated data sources. In 2018 IEEE 34th International Conference on Data Engineering Workshops (ICDEW), pages 9–16. IEEE.
|
|
11 |
Costa, F. S., Nassar, S. M., Gusmeroli, S., Schultz, R., Conceição, A. G., Xavier, M.,Hessel, F., and Dantas, M. A. (2020). Fasten iiot: An open real-time platform for vertical, horizontal and end-to-end integration. Sensors, 20(19):5499.
|
|
12 |
Coulouris, G., Dollimore, J., Kindberg, T., and Blair, G. (2005). Distributed Systems: Concepts and Design. Pearson Education, 5th edition.
|
|
13 |
dos Santos, R. P. (2016). Managing and monitoring software ecosystem to support demand and solution analysis. PhD thesis, Universidade Federal do Rio de Janeiro.
|
|
14 |
Freitas, A. and Curry, E. (2014). Natural language queries over heterogeneous linked datagraphs: A distributional-compositional semantics approach. In Proceedings of the 19th international conference on Intelligent User Interfaces, pages 279–288.
|
|
15 |
Garofalakis, M., Gehrke, J., and Rastogi, R., editors (2016). Data Stream Management. Springer Berlin Heidelberg.
|
|
16 |
Ghasemaghaei, M. and Calic, G. (2020). Assessing the impact of big data on firm innovation performance: Big data is not always better data. Journal of Business Research,108:147–162.
|
|
17 |
Kiran, M., Murphy, P., Monga, I., Dugan, J., and Baveja, S. S. (2015). Lambda architecture for cost-effective batch and speed big data processing. In 2015 IEEE International Conference on Big Data (Big Data), pages 2785–2792. IEEE.
|
|
18 |
María Cavanillas, J., Curry, E., and Wahlster, W. (2016). New horizons for a data-driven economy: a roadmap for usage and exploitation of big data in Europe. Springer Nature.
|
|
19 |
Mikalef, P., Pappas, I., Krogstie, J., and Pavlou, P. A. (2020). Big data and business analytics: A research agenda for realizing business value. Elsevier.
|
|
20 |
Miller, R. J. (2018). Open data integration. Proceedings of the VLDB Endowment,11(12):2130–2139.
|
|
21 |
Shan, S., Luo, Y., Zhou, Y., and Wei, Y. (2019). Big data analysis adaptation and enterprises’ competitive advantages: the perspective of dynamic capability and resource-based theories.Technology Analysis & Strategic Management, 31(4):406–420.
|
|
22 |
Shein, A. and Chrysanthis, P. K. (2020). Multi-query optimization of incrementally evaluated sliding-window aggregations. IEEE Transactions on Knowledge and Data Engineering.
|
|
23 |
Stonebraker, M. and Ilyas, I. F. (2018). Data integration: The current status and the wayforward. IEEE Data Eng. Bull., 41(2):3–9.
|
|
24 |
Tatbul, N. (2010). Streaming data integration: Challenges and opportunities. In 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010), pages 155–158. IEEE.
|
|
25 |
Tian, A., Sequeda, J. F., and Miranker, D. P. (2013). Qodi: Query as context in automatic data integration. In International Semantic Web Conference, pages 624–639. Springer.
|
|
26 |
Toman, S. H. (2017). The design of a templating language to embed database queries into documents. Journal of Education College Wasit University, 1(29):512–534.
|
|
27 |
Tu, D. Q., Kayes, A., Rahayu, W., and Nguyen, K. (2020). Iot streaming data integration from multiple sources. Computing, 102(10):2299–2329.
|
|
28 |
Wang, J., Yang, Y., Wang, T., Sherratt, R. S., and Zhang, J. (2020). Big data service architecture: a survey. Journal of Internet Technology, 21(2):393–405.
|
|
29 |
Wang, X., Haas, L., and Meliou, A. (2018). Explaining data integration. Data Engineering Bulletin, 41(2).
|
|