SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Yanna Gonçalves(yannatorres@alu.ufc.br)
2 João Alves(joaovba2002@alu.ufc.br)
3 Breno Sá(brenoalef@insightlab.ufc.br)
4 Lázaro Silva(lazaronathanaell@alu.ufc.br)
5 José Macedo(jose.macedo@dc.ufc.br )
6 Ticiana Coelho da Silva(ticianalc@insightlab.ufc.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Baevski, A., Zhou, Y., Mohamed, A., and Auli, M. (2020). wav2vec 2.0: A framework for self-supervised learning of speech representations. In NeurIPS, pages 12449–12460.
2 Chiu, C.-C., Tripathi, A., Chou, K., Co, C., Jaitly, N., Jaunzeikare, D., Kannan, A., Nguyen, P., Sak, H., Sankar, A., et al. (2017). Speech recognition for medical conversations. arXiv preprint arXiv:1711.07274
3 Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805
4 Hsu, W.-N., Bolte, B., Tsai, Y.-H. H., Lakhotia, K., Salakhutdinov, R., and Mohamed, A. (2021). Hubert: Self-supervised speech representation learning by masked prediction of hidden units. IEEE/ACM TASLP, 29:3451–3460
5 Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., et al. (2023). Mistral 7b. arXiv preprint arXiv:2310.06825
6 Kar, S., Mishra, P., Lin, J., Woo, M.-J., Deas, N., Linduff, C., Niu, S., Yang, Y., McClendon, J., Smith, D. H., et al. (2021). Systematic evaluation and enhancement of speech recognition in operational medical environments. In IJCNN, pages 1–8
7 Lee, T.-Y., Li, C.-C., Chou, K.-R., Chung, M.-H., Hsiao, S.-T., Guo, S.-L., Hung, L.-Y., and Wu, H.-T. (2023). Machine learning-based speech recognition system for nursing documentation–a pilot study. IJMI, 178:105213
8 Li, B., Zhou, H., He, J., Wang, M., Yang, Y., and Li, L. (2020). On the sentence embeddings from pre-trained language models. In Webber, B., Cohn, T., He, Y., and Liu, Y., editors, Proceedings of the EMNLP, pages 9119–9130
9 Li, J., Lavrukhin, V., Ginsburg, B., Leary, R., Kuchaiev, O., Cohen, J. M., Nguyen, H., and Gadde, R. T. (2019). Jasper: An End-to-End Convolutional Neural Acoustic Model. In Proc. Interspeech 2019, pages 71–75. ISCA
10 Paats, A., Alumae, T., Meister, E., and Fridolin, I. (2018). Retrospective analysis of clinical performance of an estonian speech recognition system for radiology: effects of different acoustic and language models. JDI, 31(5):615–621.
11 Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: A method for automatic evaluation of machine translation. In Proceedings of the 40th ACL, page 311–318, USA. Association for Computational Linguistics
12 Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., and Sutskever, I. (2023). Robust speech recognition via large-scale weak supervision. In ICML, pages 28492–28518.
13 Reddy, D. R. (1976). Speech recognition by machine: A review. Proceedings of the IEEE, 64(4):501–531.
14 Rubenstein, P. K., Asawaroengchai, C., Nguyen, D. D., Bapna, A., Borsos, Z., Quitry, F. d. C., Chen, P., Badawy, D. E., Han, W., Kharitonov, E., et al. (2023). Audiopalm: A large language model that can speak and listen. arXiv preprint arXiv:2306.12925.
15 Schneider, S., Baevski, A., Collobert, R., and Auli, M. (2019). wav2vec: Unsupervised pre-training for speech recognition. In Interspeech 2019, pages 3465–3469.
16 Sullivan, P., Shibano, T., and Abdul-Mageed, M. (2022). Improving automatic speech recognition for non-native english with transfer learning and language model decoding. In AANLSP, pages 21–44
17 Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Roziere, B., Goyal, N., Hambro, E., Azhar, F., et al. (2023). Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971
18 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,and Polosukhin, I. (2017). Attention is all you need. In NIPS, pages 6000–6010
19 Wilcoxon, F. (1992). Individual comparisons by ranking methods. In Kotz, S. and Johnson, N. L., editors, Breakthroughs in Statistics: Methodology and Distribution, pages 196–202. Springer New York, New York, NY.