SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Riccardo Campisano(riccardo.campisano@linea.gov.br)
2 Fabio Porto (fporto@lncc.br)
3 Esther Pacitti(esther.pacitti@lirmm.fr)
4 Florent Masseglia(Florent.Masseglia@inria.fr)
5 Eduardo Ogasawara( eogasawara@ieee.org)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Agrawal, R. and Srikant, R. (1995). Mining sequential patterns. In Proceedings of the Eleventh International Conference on Data Engineering, ICDE ’95, pages 3–14, Washington, DC, USA. IEEE Computer Society.
2 Alatrista-Salas, H., Azé, J., Bringay, S., Cernesson, F., Selmaoui-Folcher, N., and Teisseire, M. (2015). A knowledge discovery process for spatiotemporal data: Application to river water quality monitoring. Ecological Informatics, 26:127–139.
3 Frank, A. U. (2003). Ontology for spatio-temporal databases. In Spatio-Temporal Databases, pages 9–77. Springer.
4 Fu, T.-c. (2011). A review on time series data mining. Eng. Appl. Artif. Intell., 24(1):164–181.
5 Han, J., Cheng, H., Xin, D., and Yan, X. (2007). Frequent pattern mining: Current status and future directions. Data Min. Knowl. Discov., 15(1):55–86.
6 Leong, K. and Chan, S. (2012). Stem: A novel approach for spatiotemporal sequence mining. Asian Journal of Information Technology, 11(3):94–99.
7 Lin, J., Keogh, E., Lonardi, S., and Chiu, B. (2003). A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, DMKD ’03, pages 2–11, New York, NY, USA. ACM.
8 Mabroukeh, N. R. and Ezeife, C. I. (2010). A taxonomy of sequential pattern mining algorithms. ACM Comput. Surv., 43(1):3:1–3:41.
9 Zhou, H.-W. (2014). Practical seismic data analysis. Cambridge University Press.