1 |
Armbrust, M., Zaharia, M., Das, T., Davidson, A., Ghodsi, A., Or, A., Rosen, J., Stoica, I., Wendell, P., et al., (2015), "Scaling spark in the real world: performance and usability", PVLDB, v. 8, n. 12, p. 1840–1843.
|
|
2 |
Atkinson, M., Gesing, S., Montagnat, J., Taylor, I., (2017), "Scientific workflows: past, present and future", FGCS, v. 75, p. 216–227.
|
|
3 |
F. da Silva, R., Filgueira, R., Pietri, I., Jiang, M., Sakellariou, R., Deelman, E., (2017), "A characterization of workflow management systems for extreme-scale applications", FGCS, v. 75, p. 228–238.
|
|
4 |
GitHub. RFA Spark Repository. Available on: github.com/hpcdb/RFA-Spark.
|
|
5 |
Gittens, A., Devarakonda, A., Racah, E., Ringenburg, M., Gerhardt, L., Kottalam, J., Liu, J., Maschhoff, K., Canon, S., et al., (2016), "Matrix factorizations at scale: A comparison of scientific data analytics in Spark and C+MPI using three case studies". In: IEEE Int. Conf. on Big Data, p. 204–213
|
|
6 |
Oliveira, D., Boeres, C., Neto, A., Porto, F., (2015), "Avaliação da localidade de dados intermediários na execução paralela de workflows bigdata". In: SBBD, p. 29–40
|
|
7 |
Özsu, M. T., Valduriez, P., (2011), Principles of distributed database systems. 3 ed. New York, Springer.
|
|
8 |
Raicu, I., Foster, I. T., Zhao, Y., (2008), "Many-task computing for grids and supercomputers". In: MTAGS, p. 1–11
|
|
9 |
Shi, J., Qiu, Y., Minhas, U. F., Jiao, L., Wang, C., Reinwald, B., Özcan, F., (2015), "Clash of the titans: MapReduce vs. Spark for large scale data analytics", PVLDB, v. 8, n. 13, p. 2110–2121.
|
|
10 |
Souza, R., Silva, V., Coutinho, A. L. G. A., Valduriez, P., Mattoso, M., (2016), "Online input data reduction in scientific workflows". In: WORKS, p. 44–53
|
|
11 |
Zhang, Z., Barbary, K., Nothaft, F. A., Sparks, E. R., Zahn, O., Franklin, M. J., Patterson, D. A., Perlmutter, S., (2017), "Kira: processing astronomy imagery using big data technology", IEEE Trans. Big Data, v. PP, n. 99, p. 1–14.
|
|