1 |
Cohen, J. P. et al. (2020). Covid-19 image data collection: Prospective predictions are the future. arXiv 2006.11988.
|
|
2 |
Deza, M. M. and Deza, E. (2009). Encyclopedia of distances. InEncyclopedia of distances, pages 1–583. Springer. DOI: 10.1007/978-3-642-00234-2.
|
|
3 |
DSouza, J. and Velan S., S. (2020). Using exploratory data analysis for generating inferences on the correlation of covid-19 cases. In ICCCNT Conference, pages 1–6. IEEE. DOI: 10.1109/ICCCNT49239.2020.9225621.
|
|
4 |
FAPESP(2020).FAPESPCOVID-9 DataSharing/BR. https://repositoriodatasharingfapesp.uspdigital.usp.br.
|
|
5 |
Farias, J. d., Barioni, M. C., and Rezende, H. (2019). Explorando o uso de árvores b+ na indexação de dados por similaridade. In SBBD Conference, pages 163–168, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/sbbd.2019.8817.
|
|
6 |
Gansel, X., Mary, M., and van Belkum, A. (2019). Semantic data interoperability, digital medicine, and e-health in infectious disease management: a review. EJCMID Journal,38(6):1023–1034. DOI:10.1007/s10096-019-03501-6.
|
|
7 |
Han, J., Kamber, M., and Pei, J. (2011) .Data Mining: Concepts and Techniques, 3rd edition. Morgan Kaufmann.
|
|
8 |
Hoshen, Y. and Wolf, L. (2018). Unsupervised correlation analysis. InCVPR Conference, pages 3319–3328. DOI: 10.1109/CVPR.2018.00350.
|
|
9 |
Huang, H., Zhang, R., and Lu, X. (2019). A recommendation model for medical data visualization based on information entropy and decision tree optimized by two correlation coefficients. In ACM ICICM Conference, page 52–56.DOI: 10.1145/3357419.3357436.
|
|
10 |
Jensen, P. B., Jensen, L. J., and Brunak, S. (2012). Mining electronic health records: towards better research applications and clinical care. Nature Reviews Genetics,13(6):395–405. DOI: 10.1038/nrg3208.
|
|
11 |
Kaieski, N., de Oliveira, L. P. L., and Villamil, M. B. (2016). Vis-health: Exploratory analysis and visualization of dengue cases in Brazil. In HICSS Conference, pages3063–3072. IEEE. DOI: 10.1109/HICSS.2016.385.
|
|
12 |
Samet, H. (2006). Foundations of multidimensional and metric data structures. M. K. series in data management systems. Academic Press.
|
|
13 |
Xiao, C. et al. (2016). Using spearman’s correlation coefficients for exploratory data analysis on big dataset. CCPE Journal, 28(14):3866–3878. DOI: 10.1002/cpe.3745.
|
|
14 |
Yadav, P., Steinbach, M., Kumar, V., and Simon, G. (2018). Mining electronic health records (EHRs): A survey. ACM Computing Surveys, 50(6). DOI: 10.1145/3127881.
|
|
15 |
Yang, F. et al. (2019). Correlation judgment and visualization features: A comparative study. IEEE TVCG Journal, 25(3):1474–1488. DOI:10.1109/TVCG.2018.2810918.
|
|
16 |
Zhang, H., Hou, Y., Qu, D., and Liu, Q. (2016). Correlation visualization of time-varying patterns for multi-variable data. IEEE Access, 4:4669–4677. DOI: 10.1109/AC-CESS.2016.2601339.
|
|