1 |
Almatarneh, S. and Gamallo, P. (2018). A lexicon based method to search for extreme opinions. PLOS ONE, 13(5):1–19.
|
|
2 |
Deng, S., Sinha, A. P., and Zhao, H. (2017). Adapting sentiment lexicons to domain-specific social media texts. Decision Support Systems, 94:65–76.
|
|
3 |
Freitas, C. (2013). Sobre a construção de um léxico da afetividade para o processamento computacional do português. Revista Brasileira de Linguística, 13(4):1031–1059.
|
|
4 |
Huang, M., Xie, H., Rao, Y., Feng, J., and Wang, F. L. (2020). Sentiment strength detection with a context-dependent lexicon-based convolutional neural network. Information Sciences, 520:389–399.
|
|
5 |
Labille, K., Alfarhood, S., and Gauch, S. (2016). Estimating sentiment via probability and information theory. KDIR, 2016:121–129.
|
|
6 |
Labille, K., Gauch, S., and Alfarhood, S. (2017). Creating domain-specific sentiment lexicons via text mining. In Workshop Issues Sentiment Discovery Opinion Mining, pages 1–8.
|
|
7 |
Pereira, D. A. (2021). A survey of sentiment analysis in the portuguese language. Artificial Intelligence Review, 54(2):1087–1115.
|
|
8 |
Souza, M. and Vieira, R. (2011). Construction of a portuguese opinion lexicon from multiple resources. Simp´osio Brasileiro de TI e da Linguagem Humana.
|
|
9 |
Vilares, D., Peng, H., Satapathy, R., and Cambria, E. (2018). Babelsenticnet: a commonsense reasoning framework for multilingual sentiment analysis. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1292–1298. IEEE.
|
|
10 |
Xiang, R., Jiao, Y., and Lu, Q. (2019). Sentiment augmented attention network for cantonese restaurant review analysis. In Proceedings of WISDOM’19: Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM’19).
|
|