1 |
Akter, Y. A. and Rahman, M. A. (2019). Extracting rdf triples from raw text. In 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), pages 1–4. IEEE.
|
|
2 |
Augenstein, I., Padó, S., and Rudolph, S. (2012). Lodifier: Generating linked data from unstructured text. In Extended Semantic Web Conference, pages 210–224. Springer.
|
|
3 |
Gangemi, A., Presutti, V., Reforgiato Recupero, D., Nuzzolese, A. G., Draicchio, F., and Mongiovı, M. (2017). Semantic web machine reading with fred. Semantic Web, 8(6):873–893
|
|
4 |
Liu, Y., Zhang, T., Liang, Z., Ji, H., and McGuinness, D. L. (2018). Seq2rdf: An end- to-end application for deriving triples from natural language text. In CEUR Workshop Proceedings, volume 2180. CEUR-WS.
|
|
5 |
Martinez-Rodriguez, J. L., Lopez-Arevalo, I., Rios-Alvarado, A. B., Hernandez, J., and Aldana-Bobadilla, E. (2019). Extraction of rdf statements from text. In Iberoamerican Knowledge Graphs and Semantic Web Conference, pages 87–101. Springer.
|
|
6 |
Regino, A. G., Caus, R. O., Hochgreb, V., and dos Reis, J. C. (2022a). Knowledge graph-based product recommendations on e-commerce platforms. In Aveiro, D., Di- etz, J. L. G., and Filipe, J., editors, Proceedings of the 14th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2022, Volume 2: KEOD, Valletta, Malta, October 24-26, 2022, pages 32–42. SCITEPRESS
|
|
7 |
Regino, A. G., Caus, R. O., Hochgreb, V., and dos Reis, J. C. (2022b). QART: A framework to transform natural language questions and answers into RDF triples. In Aveiro, D., Dietz, J. L. G., and Filipe, J., editors, Proceedings of the 14th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2022, Volume 2: KEOD, Valletta, Malta, October 24-26, 2022, pages 55–65. SCITEPRESS.
|
|
8 |
Regino, A. G., Caus, R. O., Hochgreb, V., and dos Reis, J. C. (2023a). From natural language texts to rdf triples: A novel approach to generating e-commerce knowledge graphs. In Coenen, F., Fred, A., Aveiro, D., Dietz, J., Bernardino, J., Masciari, E., and Filipe, J., editors, Knowledge Discovery, Knowledge Engineering and Knowledge Management, pages 149–174. Communications in Computer and Information Science.
|
|
9 |
Regino, A. G., Caus, R. O., Hochgreb, V., and Reis, J. C. d. (2023b). Leveraging knowledge graphs for e-commerce product recommendations. SN Computer Science, 4(5):689.
|
|
10 |
Regino, A. G. and dos Reis, J. C. (2024). Generating e-commerce related knowledge graph from text: Open challenges and early results using llms. In Sanju Tiwari, Nandana Mihindukulasooriya, F. O. D. K. J. D. S. and Kejriwal, M., editors, Proceedings of the 3rd International workshop one knowledge graph generation from text (Text2KG) co-located with the 21st Extended Semantic Web Conference (ESWC), Hersonissos, Greece, May 26-30, 2024, volume 3747 of CEUR Workshop Proceedings, pages 21– 39. CEUR-WS.org.
|
|
11 |
Rossanez, A. and dos Reis, J. C. (2019). Generating knowledge graphs from scientific literature of degenerative diseases. In SEPDA@ ISWC, pages 12–23
|
|
12 |
Wang, X., Chen, L., Ban, T., Usman, M., Guan, Y., Liu, S., Wu, T., and Chen, H. (2021). Knowledge graph quality control: A survey. Fundamental Research, 1(5):607–626.
|
|