1 |
Alyasiri, O. M., Cheah, Y. N., Abasi, A. K., & Al-Janabi, O. M. (2022). Wrapper and hybrid feature selection methods using metaheuristic algorithms for English text classification: A systematic review. IEEE Access, 10, 39833-39852.
|
|
2 |
Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., & Lang, M. (2020). Benchmark for filter methods for feature selection in high-dimensional classification data. Computational Statistics & Data Analysis, 143, 106839.
|
|
3 |
Hou, C. K. J., & Behdinan, K. (2022). Dimensionality reduction in surrogate modeling: A review of combined methods. Data Science and Engineering, 7(4), 402-427.
|
|
4 |
Felix, J. C., Oliveira, V. M., & Silva, R. (2022, November). A Machine Learning with an Inlier/Outlier Separation Approach for the Prediction of Wagon Maintenance Times. In Anais do X Symposium on Knowledge Discovery, Mining and Learning (pp. 9-16). SBC.
|
|
5 |
Rao, P. V., & Baral, S. S. (2011). Attribute based specification, comparison and selection of feed stock for anaerobic digestion using MADM approach. Journal of Hazardous Materials, 186(2-3), 2009-2016
|
|
6 |
Silva, L. R., & Nascimento, D. C. (2023). Avaliando o Processo de Seleção de Características na Tarefa de Junção de Similaridade. In Anais do XXXVIII Simpósio Brasileiro de Bancos de Dados (pp. 348-353). SBC.
|
|
7 |
Parmezan, A. R. S., Lee, H. D., & Wu, F. C. (2017). Metalearning for choosing feature selection algorithms in data mining: Proposal of a new framework. Expert Systems with Applications, 75, 1-24.
|
|
8 |
Penha, G., Cardoso, T. N., da Silva, A. P. C., & Moro, M. M. (2016). Análise de métodos de Inferência Ecológica em dados de redes sociais. In Anais do XXXI Simpósio Brasileiro de Bancos de Dados (pp. 109-114). SBC.
|
|
9 |
Pilnenskiy, N., & Smetannikov, I. (2020). Feature selection algorithms as one of the python data analytical tools. Future Internet, 12(3), 54.
|
|