SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Kattiana Constantino(kattiana@dcc.ufmg.br)
2 Victor Cruz(victoraugusto@dcc.ufmg.br)
3 Otávio Zucheratto(otaviozucheratto@dcc.ufmg.br)
4 Marcos Carvalho(marcoscarvalho@dcc.ufmg.br)
5 Thiago Henrique Silva(thps@dcc.ufmg.br)
6 Celso França(celsofranca@dcc.ufmg.br)
7 Marcos Gonçalves(mgoncalv@dcc.ufmg.br)
8 Alberto Laender(laender@dcc.ufmg.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Blei, D. M. (2012). Probabilistic Topic Models. Communications of the ACM, 55(4):77–84.
2 Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3(Jan):993–1022.
3 Cunha, W., Mangaravite, V., Gomes, C., Canuto, S. D., Resende, E., Nascimento, C., Viegas, F., França, C., Martins, W. S., Almeida, J. M., Rosa, T., Rocha, L., and Gonçalves, M. A. (2021). On the Cost- Effectiveness of Neural and Non-Neural Approaches and Representations for Text Classification: A Comprehensive Comparative Study. Inf. Process. Manag., 58(3):102481.
4 Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectio- nal Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, pages 4171–4186. Association for Computational Linguistics.
5 Feng, F., Yang, Y., Cer, D., Arivazhagan, N., and Wang, W. (2022). Language-agnostic BERT Sentence Em- bedding. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, ACL, pages 878–891. Association for Computational Linguistics.
6 Garg, S., Vu, T., and Moschitti, A. (2020). TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI, pages 7780–7788. AAAI Press.
7 Inuzuka, M., do Nascimento, H., Almeida, F., Barros, B., and Jradi, W. (2020). Doclass: open-source software to support document labeling and classification. In Anais do VIII Symposium on Knowledge Discovery, Mining and Learning, pages 105–112. SBC.
8 Lewis, D. D. and Catlett, J. (1994). Heterogeneous Uncertainty Sampling for Supervised Learning. In Machine Learning Proceedings 1994, pages 148–156. Elsevier.
9 Pak, I. and Teh, P. L. (2018). Text Segmentation Techniques: A Critical Review. Innovative Computing, Optimization and Its Applications, pages 167–181.
10 Pereira, G. C., Monteiro, I. T., Vasconcelos, D. R., Braz, L., and Silva, C. H. (2021). Classificação ta- xonômica de categorias de serviços públicos para aplicações digitais. In Anais do IX Workshop de Computação Aplicada em Governo Eletrônico, pages 119–130. SBC.
11 Pinto, F. A. D., Haeusler, E. H., and Lifschitz, S. (2021). Transparência pública automatizada a partir da gramática do diário oficial. In Anais do IX Workshop de Computação Aplicada em Governo Eletrônico, pages 59–70. SBC.
12 Rangel, M., Bernardini, F., Viterbo, J., Monteiro, R., Seixas, E., and dos Santos Pinto, H. (2020). Uso de Aprendizado de Máquina para Categorização Automática de Conjuntos de Dados de Portais de Dados Abertos. In Anais do VIII Workshop de Computação Aplicada em Governo Eletrônico, pages 120–131. SBC.
13 Rodrigues, R., da Silva, J., Castro, P., Félix, N., and Soares, A. (2019). Multilingual Transformer Ensem- bles for Portuguese Natural Language Tasks. In Proceedings of the ASSIN 2 Shared Task: Evaluating Semantic Textual Similarity and Textual Entailment in Portuguese co-located with XII Symposium in Information and Human Language Technology (STIL 2019), pages 27–38. CEUR-WS.org.
14 Santos, J., Consoli, B., dos Santos, C., Terra, J., Collonini, S., and Vieira, R. (2019). Assessing the Impact of Contextual Embeddings for Portuguese Named Entity Recognition. In Proceedings of the 8th Brazilian Conference on Intelligent Systems (BRACIS), pages 437–442. IEEE.
15 Souza, F., Nogueira, R., and Lotufo, R. (2020). BERTimbau: Pretrained BERT Models for Brazilian Portuguese. In Proceedings of the 9th Brazilian Conference on Intelligent Systems, (BRACIS), pages 403–417. Springer.