1 |
Aucouturier, J.-J. and Pampalk, E. Introduction–from genres to tags: A little epistemology of music information
retrieval research. Journal of New Music Research 37 (2): 87–92, 2008.
|
|
2 |
Barbosa, J., McKay, C., and Fujinaga, I. Evaluating automated classification techniques for folk music genres
from the brazilian northeast. Computer Music: Beyond the frontiers of signal processing and computational models,
2015.
|
|
3 |
Byron, T. P., Rushworth, C. T., and Stewart, M. J. Popular music excerpts are rated as more memorable and
salient if they involve vocals, compound hooks, and choruses. Music Perception: An Interdisciplinary Journal 42 (3):
197–206, 2025.
|
|
4 |
Cerati, G. Difficult to define, easy to understand: the use of genre categories while talking about music. SN Social
Sciences 1 (12): 288, 2021.
|
|
5 |
Cheng, Y.-H., Chang, P.-C., and Kuo, C.-N. Convolutional neural networks approach for music genre classification.
In 2020 International Symposium on Computer, Consumer and Control (IS3C). IEEE, pp. 399–403, 2020.
|
|
6 |
da Conceição, J. L., de Freitas, R., Gadelha, B., Kienen, J. G., Anders, S., and Cavalcante, B. Recon-
hecendo gêneros musicais brasileiros com técnicas de aprendizagem de máquina supervisionada. In Anais do XLVII
Seminário Integrado de Software e Hardware. SBC, pp. 186–197, 2020.
|
|
7 |
Dai, J., Liang, S., Xue, W., Ni, C., and Liu, W. Long short-term memory recurrent neural network based segment
features for music genre classification. In 2016 10th International Symposium on Chinese Spoken Language Processing
(ISCSLP). IEEE, pp. 1–5, 2016
|
|
8 |
De Sousa, J. M., Pereira, E. T., and Veloso, L. R. A robust music genre classification approach for global and
regional music datasets evaluation. In 2016 IEEE international conference on digital signal processing (DSP). IEEE,
pp. 109–113, 2016.
|
|
9 |
Defferrard, M., Benzi, K., Vandergheynst, P., and Bresson, X. Fma: A dataset for music analysis. arXiv
preprint arXiv:1612.01840 , 2016.
|
|
10 |
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,
Minderer, M., Heigold, G., Gelly, S., et al. An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929 , 2020.
|
|
11 |
Fabbri, F. et al. A theory of musical genres. two applications. In Popular music perspectives. Vol. 1. Iaspm, pp.
52–81, 1982.
|
|
12 |
Fayyad, U. Knowledge discovery in databases: An overview. In International Conference on Inductive Logic Program-
ming. Springer, pp. 1–16, 1997.
|
|
13 |
Guimarães, V. d. S. and Freitas, R. d. Byrm: Brazilian youtube regional music dataset, 2025.
|
|
14 |
ISMIR. Ismir 2004 genre classification contest. In Proceedings of the 5th International Conference on Music Informa-
tion Retrieval (ISMIR 2004). Barcelona, Spain, 2004.
|
|
15 |
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86 (11): 2278–2324, 1998.
|
|
16 |
Medhat, F., Chesmore, D., and Robinson, J. Masked conditional neural networks for sound classification. Applied
Soft Computing vol. 90, pp. 106073, 2020.
|
|
17 |
Meng, Y. Music genre classification: A comparative analysis of cnn and xgboost approaches with mel-frequency
cepstral coefficients and mel spectrograms. arXiv preprint arXiv:2401.04737 , 2024.
|
|
18 |
Silla Jr, C. N., Kaestner, C. A., and Koerich, A. L. Automatic music genre classification using ensemble of
classifiers. In 2007 IEEE International Conference on Systems, Man and Cybernetics. IEEE, pp. 1687–1692, 2007.
|
|
19 |
Silva, D., Zampar, L., Rodrigues, F., and Gomes, C. Modelo automático de classificação de gêneros musicais
amazônicos. In Anais do XVIII Simpósio Brasileiro de Computação Musical. SBC, pp. 225–228, 2021.
|
|
20 |
Sturm, B. L. The gtzan dataset: Its contents, its faults, their effects on evaluation, and its future use. arXiv preprint
arXiv:1306.1461 , 2013.
|
|
21 |
Turab, M., Kumar, T., Bendechache, M., and Saber, T. Investigating multi-feature selection and ensembling for
audio classification. arXiv preprint arXiv:2206.07511 , 2022.
|
|
22 |
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin,
I. Attention is all you need. Advances in neural information processing systems vol. 30, 2017.
|
|
23 |
Wijaya, N. N., Muslikh, A. R., et al. Music-genre classification using bidirectional long short-term memory and
mel-frequency cepstral coefficients. Journal of Computing Theories and Applications 1 (3): 243–256, 2024.
|
|
24 |
Xie, C., Song, H., Zhu, H., Mi, K., Li, Z., Zhang, Y., Cheng, J., Zhou, H., Li, R., and Cai, H. Music
genre classification based on res-gated cnn and attention mechanism. Multimedia Tools and Applications 83 (5):
13527–13542, 2024.
|
|
25 |
Zhang, X. and Ras, Z. W. Analysis of sound features for music timbre recognition. In 2007 International Conference
on Multimedia and Ubiquitous Engineering (MUE’07). IEEE, pp. 3–8, 2007.
|
|
26 |
Zhao, H., Zhang, C., Zhu, B., Ma, Z., and Zhang, K. S3t: Self-supervised pre-training with swin transformer
for music classification. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, pp. 606–610, 2022.
|
|
27 |
Zhuang, Y., Chen, Y., and Zheng, J. Music genre classification with transformer classifier. In Proceedings of the
2020 4th international conference on digital signal processing. pp. 155–159, 2020.
|
|