1 |
Ashrapov, I. (2020).Gans for tabular data.https://github.com/Diyago/GAN-for-tabular-data.
|
|
2 |
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: syn-thetic minority over-sampling technique.Journal of artificial intelligence research,16:321–357
|
|
3 |
Chen, M., Hao, Y., Hwang, K., Wang, L., and Wang, L. (2017). Disease prediction bymachine learning over big data from healthcare communities.IEEE Access, 5:8869–8879.
|
|
4 |
Cugliari, G., Benevenuta, S., Guarrera, S., Sacerdote, C., Panico, S., Krogh, V., Tumino,R., Vineis, P., Fariselli, P., and Matullo, G. (2019). Improving the prediction of car-diovascular risk with machine-learning and dna methylation data. In2019 IEEE Con-ference on Computational Intelligence in Bioinformatics and Computational Biology(CIBCB), pages 1–4.
|
|
5 |
Dua, D. and Graff, C. (2017a). UCI machine learning repository.
|
|
6 |
Dua, D. and Graff, C. (2017b). UCI machine learning repository.
|
|
7 |
from Jed Wing, M. K. C., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper,T., Mayer, Z., Kenkel, B., the R Core Team, Benesty, M., Lescarbeau, R., Ziem, A.,Scrucca, L., Tang, Y., Candan, C., and Hunt., T. (2018).caret: Classification andRegression Training. R package version 6.0-80.
|
|
8 |
Mukherjee, M. and Khushi, M. (2021). Smote-enc: A novel smote-based method to gen-erate synthetic data for nominal and continuous features.Applied System Innovation,4(1):18.
|
|
9 |
Porto, F., de Carvalho Moura, A. M., da Silva, F. C., Bassini, A., Palazzi, D. C., Poltosi,M., de Castro, L. E. V., and Cameron, L. C. (2012). A metaphoric trajectory datawarehouse for olympic athlete follow-up.Concurr. Comput. Pract. Exp., 24(13):1497–1512.
|
|
10 |
Prince, J. and De Vos, M. (2018). A deep learning framework for the remote detection ofparkinson’s disease using smart-phone sensor data. In2018 40th Annual InternationalConference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages3144–3147. IEEE.
|
|
11 |
S. Pereira, R., ferreira da silva, H. M., and A.M Porto, F. (2021).AugmenterR: DataAugmentation for Machine Learning on Tabular Data. R package version 0.1.0.
|
|
12 |
Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on image data augmentation fordeep learning.Journal of Big Data, 6(1):1–48.
|
|
13 |
Sturges, H. A. (1926). The choice of a class interval.Journal of the American StatisticalAssociation, 21(153):65–66.
|
|
14 |
Van Dyk, D. A. and Meng, X.-L. (2001). The art of data augmentation.Journal ofComputational and Graphical Statistics, 10(1):1–50.
|
|
15 |
Vanegas, M. I., Ghilardi, M. F., Kelly, S. P., and Blangero, A. (2018). Machine learningfor eeg-based biomarkers in parkinson’s disease. In2018 IEEE International Confer-ence on Bioinformatics and Biomedicine (BIBM), pages 2661–2665.
|
|
16 |
Zhang, S., Bamakan, S. M. H., Qu, Q., and Li, S. (2019). Learning for personalizedmedicine: A comprehensive review from a deep learning perspective.IEEE Reviewsin Biomedical Engineering, 12:194–208.
|
|