SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 João Fernandes Zenóbio(joao.zenobio@aluno.ufop.edu.br)
2 Pedro Henrique Lopes Silva(silvap@ufop.edu.br)
3 Eduardo José Da Silva Luz(eduluz@ufop.edu.br)
4 Gladston Moreira(gladston@ufop.edu.br)
5 Conrado Galdino(galdinoc@gmail.com)
6 Jadson Castro Gertrudes(jadson.castro@ufop.edu.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Alcock, J. (2009). Animal behavior: An evolutionary approach. Sinauer associates.
2 Bochkovskiy, A. (2021). Yolo v4, v3 and v2 for Windows and Linux.
3 Briechle, K. and Hanebeck, U. D. (2001). Template matching using fast normalized cross correlation. In Optical pattern recognition XII, volume 4387, pages 95–102.
4 Campello, R. J. G. B., Moulavi, D., Zimek, A., and Sander, J. (2013). A framework for semi-supervised and unsupervised optimal extraction of clusters from hierarchies. Data Mining and Knowledge Discovery, 27(3):344–371.
5 Carpenter, C. C. and Ferguson, G. W. (1977). Variation and evolution of stereotyped behavior in reptiles. Biology of the Reptilia, 7:335–554.
6 Chiarot, G. and Silvestri, C. (2023). Time series compression survey. ACM Computing Surveys, 55(10):1–32.
7 Das, G., Lin, K.-I., Mannila, H., Renganathan, G., and Smyth, P. (1998). Rule discovery from time series. In KDD, volume 98, pages 16–22.
8 Fu, T.-c. (2011). A review on time series data mining. Engineering Applications of Artificial Intelligence, 24(1):164–181.
9 Gertrudes, J. C., Zimek, A., Sander, J., and Campello, R. J. G. B. (2019). A unified view of density-based methods for semi-supervised clustering and classification. Data Mining and Knowledge Discovery, 33(6):1894–1952.
10 Goodfellow, I. J., Bengio, Y., and Courville, A. C. (2016). Deep learning. Adaptive computation and machine learning. MIT Press.
11 Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computa- tion, 9(8):1735–1780.
12 Jain, A. K. and Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall.
13 Jaskowiak, P. A., Costa, I. G., and Campello, R. J. G. B. (2022). The area under the ROC curve as a measure of clustering quality. Data Mining and Knowledge Discovery, 36(3):1219–1245.
14 Kaplan, G. (2014). Animal communication. Wiley Interdisciplinary Reviews: Cognitive Science, 5(6):661–677.
15 Martins, E. P. (1991). Individual and sex differences in the use of the push-up display by the sagebrush lizard, Sceloporus graciosus. Animal Behaviour, 41(3):403–416.
16 Martins, E. P. (1993). Contextual use of the push-up display by the sagebrush lizard, Sceloporus graciosus. Animal Behaviour, 45(1):25–36.
17 Martins, E. P. (1994). Structural complexity in a lizard communication system: the Sce- loporus graciosus"push-up"display. Copeia, pages 944–955.
18 McInnes, L., Healy, J., and Astels, S. (2017). hdbscan: Hierarchical density based cluste- ring. J. Open Source Softw., 2(11):205.
19 Montgomery, D. C., Jennings, C. L., and Kulahci, M. (2015). Introduction to time series analysis and forecasting. John Wiley & Sons.
20 Moulavi, D., Jaskowiak, P. A., Campello, R. J. G. B., Zimek, A., and Sander, J. (2014). Density-based clustering validation. In Proceedings of the 2014 SIAM International Conference on Data Mining (SDM), pages 839–847.
21 Nelson, C. M. and Ord, T. J. (2022). Identifying potential cues of species identity in complex animal signals. Animal Behaviour, 186:121–136.
22 Ord, T. J. and Martins, E. P. (2006). Tracing the origins of signal diversity in anole lizards: phylogenetic approaches to inferring the evolution of complex behaviour. Ani- mal Behaviour, 71(6):1411–1429.
23 Passos, D. C. (2016). Área de vida, organização social e comunicação visual de Tropi- durus do grupo semitaeniatus (Squamata: Tropiduridae). Tese de doutorado, Univer- sidade do Estado do Rio de Janeiro.
24 Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 779–788.
25 Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20:53–65.
26 Silva, A. O. (2018). Framework para extração de sinais na comunicação visual de lagar- tos. Trabalho de conclusão de curso, Universidade Federal de Ouro Preto.
27 Spong, M., Hutchinson, S., and Vidyasagar, M. (2005). Robot modeling and control. Wiley select coursepack. Wiley.
28 Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(11).