1 |
Alcock, J. (2009). Animal behavior: An evolutionary approach. Sinauer associates.
|
|
2 |
Bochkovskiy, A. (2021). Yolo v4, v3 and v2 for Windows and Linux.
|
|
3 |
Briechle, K. and Hanebeck, U. D. (2001). Template matching using fast normalized cross correlation. In Optical pattern recognition XII, volume 4387, pages 95–102.
|
|
4 |
Campello, R. J. G. B., Moulavi, D., Zimek, A., and Sander, J. (2013). A framework for semi-supervised and unsupervised optimal extraction of clusters from hierarchies. Data Mining and Knowledge Discovery, 27(3):344–371.
|
|
5 |
Carpenter, C. C. and Ferguson, G. W. (1977). Variation and evolution of stereotyped behavior in reptiles. Biology of the Reptilia, 7:335–554.
|
|
6 |
Chiarot, G. and Silvestri, C. (2023). Time series compression survey. ACM Computing Surveys, 55(10):1–32.
|
|
7 |
Das, G., Lin, K.-I., Mannila, H., Renganathan, G., and Smyth, P. (1998). Rule discovery from time series. In KDD, volume 98, pages 16–22.
|
|
8 |
Fu, T.-c. (2011). A review on time series data mining. Engineering Applications of Artificial Intelligence, 24(1):164–181.
|
|
9 |
Gertrudes, J. C., Zimek, A., Sander, J., and Campello, R. J. G. B. (2019). A unified view of density-based methods for semi-supervised clustering and classification. Data Mining and Knowledge Discovery, 33(6):1894–1952.
|
|
10 |
Goodfellow, I. J., Bengio, Y., and Courville, A. C. (2016). Deep learning. Adaptive computation and machine learning. MIT Press.
|
|
11 |
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computa- tion, 9(8):1735–1780.
|
|
12 |
Jain, A. K. and Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall.
|
|
13 |
Jaskowiak, P. A., Costa, I. G., and Campello, R. J. G. B. (2022). The area under the ROC curve as a measure of clustering quality. Data Mining and Knowledge Discovery, 36(3):1219–1245.
|
|
14 |
Kaplan, G. (2014). Animal communication. Wiley Interdisciplinary Reviews: Cognitive Science, 5(6):661–677.
|
|
15 |
Martins, E. P. (1991). Individual and sex differences in the use of the push-up display by the sagebrush lizard, Sceloporus graciosus. Animal Behaviour, 41(3):403–416.
|
|
16 |
Martins, E. P. (1993). Contextual use of the push-up display by the sagebrush lizard, Sceloporus graciosus. Animal Behaviour, 45(1):25–36.
|
|
17 |
Martins, E. P. (1994). Structural complexity in a lizard communication system: the Sce- loporus graciosus"push-up"display. Copeia, pages 944–955.
|
|
18 |
McInnes, L., Healy, J., and Astels, S. (2017). hdbscan: Hierarchical density based cluste- ring. J. Open Source Softw., 2(11):205.
|
|
19 |
Montgomery, D. C., Jennings, C. L., and Kulahci, M. (2015). Introduction to time series analysis and forecasting. John Wiley & Sons.
|
|
20 |
Moulavi, D., Jaskowiak, P. A., Campello, R. J. G. B., Zimek, A., and Sander, J. (2014). Density-based clustering validation. In Proceedings of the 2014 SIAM International Conference on Data Mining (SDM), pages 839–847.
|
|
21 |
Nelson, C. M. and Ord, T. J. (2022). Identifying potential cues of species identity in complex animal signals. Animal Behaviour, 186:121–136.
|
|
22 |
Ord, T. J. and Martins, E. P. (2006). Tracing the origins of signal diversity in anole lizards: phylogenetic approaches to inferring the evolution of complex behaviour. Ani- mal Behaviour, 71(6):1411–1429.
|
|
23 |
Passos, D. C. (2016). Área de vida, organização social e comunicação visual de Tropi- durus do grupo semitaeniatus (Squamata: Tropiduridae). Tese de doutorado, Univer- sidade do Estado do Rio de Janeiro.
|
|
24 |
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 779–788.
|
|
25 |
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20:53–65.
|
|
26 |
Silva, A. O. (2018). Framework para extração de sinais na comunicação visual de lagar- tos. Trabalho de conclusão de curso, Universidade Federal de Ouro Preto.
|
|
27 |
Spong, M., Hutchinson, S., and Vidyasagar, M. (2005). Robot modeling and control. Wiley select coursepack. Wiley.
|
|
28 |
Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(11).
|
|