1 |
Campello, R. J. G. B., Moulavi, D., and Sander, J. (2013). Density-based clustering based on hierarchical density estimates.
|
|
2 |
Cruz, A. B., Ferreira, J., Carvalho, D., Mendes, E., Pacitti, E., Coutinho, R., Porto, F., and Ogasawara, E. (2018). Detecção de anomalias frequentes no transporte rodoviário urbano. In Anais do XXXIII Simpósio Brasileiro de Banco de Dados, pages 271–276, Porto Alegre, RS, Brasil. SBC.
|
|
3 |
Filho, J. J. and Wainer, J. (2008). Hpb: A model for handling bn nodes with high cardinality parents. Journal of Machine Learning Research.
|
|
4 |
Ghahramani, Z. (1998). Learning dynamic Bayesian networks, pages 168–197. Springer Berlin Heidelberg, Berlin, Heidelberg.
|
|
5 |
Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In 2008 Eighth IEEE International Conference on Data Mining, pages 413–422.
|
|
6 |
Mao, Y., Shi, Y., and Lu, B. (2024). Detecting urban traffic anomalies using traffic monitoring data. ISPRS International Journal of Geo-Information.
|
|
7 |
Peralta, B., Soria, R., Nicolis, O., Ruggeri, F., Caro, L., and Bronfman, A. (2023). Outlier vehicle trajectory detection using deep autoencoders in santiago, chile.
|
|
8 |
Sun, L., Chen, X., He, Z., and Miranda-Moreno, L. (2020). Routine pattern discovery and anomaly detection in individual travel behavior. CoRR, abs/2004.03481.
|
|