SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Paulo Henrique Santos Lima(pauloh@discente.ufg.br)
2 Leonardo Andrade Ribeiro(laribeiro@inf.ufg.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Barlaug, N. and Gulla, J. A. (2021). Neural Networks for Entity Matching: A Survey. ACM Trans. Knowl. Discov. Data, 15(3):52:1–52:37.
2 Caldeira, L. and Ferreira, A. (2018). Melhorias no Processo de Blocagem para Resolução de Entidades Baseadas na Relevância dos Termos. In Proceedings of the Brazilian Symposium on Databases, pages 61–72.
3 Chen, D. and Zhang, R. (2024). Building Multimodal Knowledge Bases With Multimodal Computational Sequences and Generative Adversarial Networks. Trans. Multi., 26:2027–2040.
4 Elmagarmid, A. K., Ipeirotis, P. G., and Verykios, V. S. (2007). Duplicate Record Detection: A Survey. IEEE Trans. Knowl. Data Eng., 19(1):1–16.
5 Freire, J., Fan, G., Feuer, B., Koutras, C., Liu, Y., Peña, E., Santos, A. S. R., Silva, C. T., and Wu, E. (2025). Large Language Models for Data Discovery and Integration: Challenges and Opportunities. IEEE Data Engineering Bulletin, 49(1):3–31.
6 Li, Y., Li, J., Suhara, Y., Doan, A., and Tan, W. (2023). Effective Entity Matching with Transformers. VLDB Journal, 32(6):1215–1235.
7 Lima, P. H. S., Santana, D. R., Martins, W. S., and Ribeiro, L. A. (2023). Evaluation of Deep Learning Techniques for Entity Matching. In International Conference on Enterprise Information Systems, pages 247–254.
8 Liu, Q., He, Y., Xu, T., Lian, D., Liu, C., Zheng, Z., and Chen, E. (2024). UniMEL: A Unified Framework for Multimodal Entity Linking with Large Language Models. In Proceedings of CIKM, pages 1909–1919.
9 Mudgal, S., Li, H., Rekatsinas, T., Doan, A., Park, Y., Krishnan, G., Deep, R., Arcaute, E., and Raghavendra, V. (2018). Deep Learning for Entity Matching: A Design Space Exploration. In Proceedings of the SIGMOD Conference, pages 19–34. ACM.
10 Newcombe, H. B., Kennedy, J. M., Axford, S. J., and James, A. P. (1959). Automatic Linkage of Vital Records. Science, 130(3381):954–959.
11 Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., and Sutskever, I. (2021). Learning Transferable Visual Models From Natural Language Supervision. CoRR, abs/2103.00020.
12 Santana, D. R., Lima, P., and Ribeiro, L. (2025). EM-Join: Efficient Entity Matching Using Embedding-Based Similarity Join. In International Conference on Enterprise Information Systems, pages 402–409.
13 Song, S., Zhao, S., Wang, C., Yan, T., Li, S., Mao, X., and Wang, M. (2024). A Dual-Way Enhanced Framework from Text Matching Point of View for Multimodal Entity Linking. In Proceedings of AAAI, pages 19008–19016.
14 Sun, W., Fan, Y., Guo, J., Zhang, R., and Cheng, X. (2022). Visual Named Entity Linking: A New Dataset and A Baseline. In Goldberg, Y., Kozareva, Z., and Zhang, Y., editors, Proceedings of EMNLP, pages 2403–2415.
15 Zhou, X., Wang, P., Li, G., Xie, J., and Wu, J. (2021). Weibo-MEL, Wikidata-MEL and Richpedia-MEL: Multimodal Entity Linking Benchmark Datasets. pages 315–320.