1 |
Guyon, I.; et. al. Analysis of the AutoMl Challenge series 2015-2018. Frank Hutter; Lars
Kotthoff; Joaquin Vanschoren (eds). AutoML: Methods, Systems, Challenges, Springer
Verlag, In: press, The Springer Series on Challenges in Machine Learning. 2019. doi:
10.1007/978-3-030-05318-5_10
|
|
2 |
Ribeiro, C. E.; Zárate, L. E. Classifying longevity profiles through longitudinal data mining,
Expert Systems with Applications, v. 117, p. 75-89, 2019. DOI: 10.1016/j.eswa.2018.09.035
|
|
3 |
Araújo, A. S.; Silva, A. R.; Zárate, L .E. Extreme precipitation prediction based on neural
network model – A case study for southeastern Brazil, Journal of Hydrology, V. 606, 127454
2022. doi: 10.1016/j.jhydrol.2022.127454.
|
|
4 |
Zarate, L., Petrocchi , B. ., Dias Maia, C. ., Felix, C., & Gomes, M. P. . (2023). CAPTO - A
method for understanding problem domains for data science projects: CAPTO - Um método
para entendimento de domínio de problema para projetos em ciência de
dados. Concilium, 23(15), 922–941. https://doi.org/10.53660/CLM-1815-23M33.
|
|
5 |
Teece, D.J. (2013). Nonaka’s Contribution to the Understanding of Knowledge Creation,
Codification and Capture. In: von Krogh, G., Takeuchi, H., Kase, K., Cantón, C.G. (eds)
Towards Organizational Knowledge. The Nonaka Series on Knowledge and Innovation.
Palgrave Macmillan, London. https://doi.org/10.1057/9781137024961_2
|
|
6 |
Brady SS, Brubaker L, Fok CS, et al. Development of Conceptual Models to Guide Public
Health Research, Practice, and Policy: Synthesizing Traditional and Contemporary
Paradigms. Health Promot Pract. 2020;21(4):510-524. doi:10.1177/1524839919890869
|
|
7 |
Sally C. Brailsford, Tillal Eldabi, Martin Kunc, Navonil Mustafee, Andres F. Osorio, Hybrid
simulation modelling in operational research: A state-of-the-art review, European Journal of
Operational Research, Volume 278, Issue 3, 2019, Pages 721-737, ISSN 0377-2217,
https://doi.org/10.1016/j.ejor.2018.10.025.(https://www.sciencedirect.com/science/article/pii/
S0377221718308786)
|
|