SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Fabiano Belém(fmuniz@dcc.ufmg.br)
2 Marcelo Ganem(masganem@dcc.ufmg.br)
3 Celso França(celsofranca@dcc.ufmg.br)
4 Marcos Carvalho(marcoscarvalho@dcc.ufmg.br)
5 Alberto Laender(laender@dcc.ufmg.br)
6 Marcos Gonçalves(mgoncalv@dcc.ufmg.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Brunner, U. & Stockinger, K. (2020). Entity Matching with Transformer Architectures - A Step Forward in Data Integration. In International Conference on Extending Database Technology, pages 463–473
2 Caputo, A., Basile, P., & Semeraro, G. (2009). Boosting a Semantic Search Engine by Named Entities. In Foundations of Intelligent Systems, pages 241–250
3 Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Conference of the of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4171–4186
4 Eberts, M. & Ulges, A. (2020). Span-based Joint Entity and Relation Extraction with Transformer Pretraining. In 24th European Conference on Artificial Intelligence, pages 2006–2013
5 Eberts, M. & Ulges, A. (2021). An End-to-end Model for Entity-level Relation Extraction using Multiinstance Learning. In Association for Computational Linguistics, pages 3650–3660
6 Finkel, J. R., Grenager, T., & Manning, C. (2005). Incorporating non-local information into information extraction systems by Gibbs sampling. In Annual Meeting of the Association for Computational Linguistics, pages 363–370
7 Fu, J., Huang, X., & Liu, P. (2021). SpanNER: Named Entity Re-/Recognition as Span Prediction. In Annual Meeting of the Association for Computational Linguistics, pages 7183–7195
8 Liu, C., Fan, H., & Liu, J. (2021). Span-based nested named entity recognition with pretrained language model. In Jensen, C. S., Lim, E.-P., Yang, D.-N., Lee, W.-C., Tseng, V. S., Kalogeraki, V., Huang, J.-W., & Shen, C.-Y., editors, Database Systems for Advanced Applications, pages 620–628
9 Luz de Araujo, P. H., de Campos, T. E., de Oliveira, R. R. R., Stauffer, M., Couto, S., & Bermejo, P. (2018). LeNER-Br: a dataset for named entity recognition in Brazilian legal text. In International Conference on the Computational Processing of Portuguese (PROPOR), pages 313–323
10 Niu, F., Zhang, C., R´e, C., & Shavlik, J. W. (2012). DeepDive: Web-scale Knowledge-base Construction using Statistical Learning and Inference. VLDS, 12:25–28
11 Patil, N., Patil, A., & Pawar, B. (2020). Named Entity Recognition using Conditional Random Fields. Procedia Computer Science, 167:1181–1188
12 Silva, L., Canalle, G. K., Salgado, A. C., L´oscio, B., & Moro, M. (2019). Uma An´alise Experimental do Impacto da Selec¸ ˜ao de Atributos em Processos de Resoluc¸ ˜ao de Entidades. In SBBD, pages 37–48
13 Wang, T., Zhao, X., Lv, Q., Hu, B., & Sun, D. (2021). Density weighted diversity based query strategy for active learning. In IEEE International Conference on Computer Supported Cooperative Work in Design (CSCWD), pages 156–161.
14 Zhang, S., He, L., Vucetic, S., & Dragut, E. (2018). Regular Expression Guided Entity Mention Mining from Noisy Web Data. In Empirical Methods in Natural Language Processing, pages 1991–2000