1 |
Information technology – database languages – gql. Standard ISO/IEC
39075:2024, International Organization for Standardization (ISO), Geneva, CH.
|
|
2 |
Chen, B., Guo, Z., Yang, Z., Chen, Y., Chen, J., Liu, Z., Shi, C., and Yang, C. (2025).
Pathrag: Pruning graph-based retrieval augmented generation with relational paths.
arXiv preprint arXiv:2502.14902.
|
|
3 |
Gao, Y., Xiong, Y., Gao, X., and et al. (2023). Retrieval-augmented generation for large
language models: A survey. arXiv preprint, arXiv:2312.10997.
|
|
4 |
Guo, Z., Xia, L., Yu, Y., Ao, T., and Huang, C. (2024). Lightrag: Simple and fast retrieval-
augmented generation.
|
|
5 |
Lewis, P., Perez, E., Piktus, A., and et al. (2020). Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in Neural Information Processing Sys-
tems (NeurIPS), pages 9459–9474.
|
|
6 |
Malkov, Y. A. and Yashunin, D. A. (2020). Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 42(4):824–836.
|
|
7 |
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv preprint, arXiv:1301.3781.
|
|
8 |
Reimers, N. and Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using sia-
mese BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 3982–3992.
|
|
9 |
Robertson, S., Walker, S., Jones, S., Hancock-Beaulieu, M., and Gatford, M. (1995).
Okapi at TREC-3. In Proceedings of the Third Text REtrieval Conference (TREC-3),
pages 109–126. NIST Special Publication.
|
|
10 |
Xavier, O. C. and da Silva Soares, A. (2024). Geração com Recuperação Aumentada (RAG) em grafos de conhecimento. In da Silva Monteiro Filho, J. M., Razente, H., and dos Santos Mello, R., editors, Tópicos em Gerenciamento de Dados e Informações: Mini-cursos do SBBD 2024. Sociedade Brasileira de Computação, São Paulo, Brazil.
|
|