SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Camila Lopes(camila@ifnmg.edu.br)
2 Daniel Jasbick(danieljasbick@id.uff.br)
3 Marcos Bedo(marcosbedo@id.uff.br)
4 Lucio Santos(santos@ifnmg.edu.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Aggarwal, C. C. (2015).Data mining: the textbook. Springer.
2 Agrawal, R., Gollapudi, S., Halverson, A., and Ieong, S. (2009). Diversifying searchresults.ACM WSDM, 1(1):5–14.
3 Carbonell, J. and Goldstein, J. (1998). The use of MMR, diversity-based reranking forreordering documents and producing summaries.ACM SIGIR, 1(1):335–336.
4 Chen, L., Gao, Y., Zheng, B., Jensen, C. S., Yang, H., and Yang, K. (2017). Pivot-basedmetric indexing.PVLDB, 10(10).
5 Drosou, M., Jagadish, H., Pitoura, E., and Stoyanovich, J. (2017). Diversity in big data:A review.Big data, 5(2):73–84.
6 Fagin, R., Kumar, R., and Sivakumar, D. (2003). Efficient similarity search and classifi-cation via rank aggregation. InACM SIGMOD, pages 301–312.
7 Hetland, M. (2009). The Basic Principles of Metric Indexing. InSwarm Intell. for Multi-objective Problems in Data Mining, pages 199–232. Springer.
8 Jain, A., Sarda, P., and Haritsa, J. R. (2004). Providing diversity in k-nearest neighborquery results. InCKDM, pages 404–413. Springer.
9 Pestov, V. (2013). Is the k-nn classifier in high dimensions affected by the curse of dimensionality? Computers & Mathematics with Applications, 65(10):1427–1437.
10 Pouyanfar, S., Yang, Y., Chen, S.-C., Shyu, M.-L., and Iyengar, S. (2018). Multimedia big data analytics: A survey.ACM CSUR, 51(1):1–34.
11 Santos, L., Oliveira, W., Ferreira, M., Cordeiro, R., Traina, A., and Traina Jr, C. (2013a). Evaluating the diversification of similarity query results.JIDM, 4(3):188–188.
12 Santos, L., Oliveira, W., Ferreira, M., Traina, A., and Traina Jr, C. (2013b). Parameter-free and domain-independent similarity search with diversity. In SSDBM, pages 1–12.
13 Smyth, B. and McClave, P. (2001). Similarity vs. diversity.PICCR, 1(1):347–361.
14 Vieira, M., Razente, H., Barioni, M., Hadjieleftheriou, M., Srivastava, D., Traina Jr., C.,and Tsotras, V. (2011). On query result diversification. In ICDE, pages 1163–1174.
15 Yu, C., Lakshmanan, L. V., and Amer-Yahia, S. (2009). Recommendation diversification using explanations. In ICDE, pages 1299–1302. IEEE.
16 Zheng, K., Wang, H., Qi, Z., Li, J., and Gao, H. (2017). A survey of query result diversification. Knowledge and Information Sys., 51(1):1–36.