SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Larissa Shimomura(l.capobianco.shimomura@tue.nl)
2 Daniel Kaster(dskaster@uel.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Barioni, M. C. N., Kaster, D. d. S., Razente, H. L., Traina, A. J., and J´unior, C. T. (2011). Advanced Database Query Systems. IGI Global.
2 Boytsov, L. and Naidan, B. (2013). Engineering efficient and effective non-metric space library. In Similarity Search and Applications, pages 280–293. Springer Berlin Heidelberg.
3 Malkov, Y., Ponomarenko, A., Logvinov, A., and Krylov, V. (2014). Approximate nearest neighbor algorithm based on navigable small world graphs. Inf. Syst., 45:61–68.
4 Naidan, B., Boytsov, L., and Nyberg, E. (2015). Permutation search methods are efficient, yet faster search is possible. Proc. VLDB Endow., 8(12):1618–1629.
5 Navarro, G. (2002). Searching in metric spaces by spatial approximation. The VLDB Journal The Int’l Journal on Very Large Data Bases, 11(1):28–46.
6 Ocsa, A., Bedregal, C., and Cuadros-Vargas, E. (2007). A new approach for similarity queries using neighborhood graphs. In Brazilian Symp. on Databases, pages 131–142.
7 Oyamada, R. S., Shimomura, L. C., Junior, S. B., and Kaster, D. S. (2020). Towards proximity graph auto-configuration: An approach based on meta-learning. In Advances in Databases and Information Systems, pages 93–107. Springer International Publishing.
8 Paredes, R. and Chávez, E. (2005). Using the k-Nearest Neighbor Graph for Proximity Searching in Metric Spaces, pages 127–138. Springer Berlin Heidelberg.
9 Shimomura, L. C. (2019). Proximity graphs for similarity searches: Experimental survey and the new connected-partition approach HGraph. Master’s thesis, Universidade Estadual de Londrina, Londrina-PR, Brazil.
10 Shimomura, L. C. and Kaster, D. S. (2019). Hgraph: A connected-partition approach to proximity graphs for similarity search. In Database and Expert Systems Applications, pages 106–121. Springer International Publishing.
11 Shimomura, L. C., Oyamada, R. S., Vieira, M. R., and Kaster, D. S. (2021). A survey on graph-based methods for similarity searches in metric spaces. Information Systems, 95:101507.
12 Shimomura, L. C., Vieira, M. R., and Kaster, D. S. (2018). Performance analysis of graph-based methods for exact and approximate similarity search in metric spaces. In Similarity Search and Applications, pages 18–32. Springer International Publishing.
13 Skopal, T. and Bustos, B. (2011). On nonmetric similarity search problems in complex domains. ACM Comput. Surv., 43(4):1–50.
14 Traina, Jr., C., Filho, R. F., Traina, A. J., Vieira, M. R., and Faloutsos, C. (2007). The omni-family of all-purpose access methods: A simple and effective way to make similarity search more efficient. The VLDB Journal, 16(4):483–505.
15 Uhlmann, J. K. (1991). Satisfying general proximity / similarity queries with metric trees. Information Processing Letters, 40(4):175 – 179.