1 |
Akter, S. & Wamba, S. F. (2016). Big data analytics in E-commerce: a systematic review and agenda for future research. Electronic Markets, 26(2):173–194
|
|
2 |
Belém, F., Ganem, M., França, C., Carvalho, M., Laender, A., & Gonçalves, M. (2022).
Reforço e Delimitação Contextual para Reconhecimento de Entidades e Relações em
Documentos Oficiais. In Anais do XXXVII Simpósio Brasileiro de Bancos de Dados,
pages 292–303.
|
|
3 |
Brunner, U. & Stockinger, K. (2020). Entity Matching with Transformer Architectures -
A Step Forward in Data Integration. In Proceedings of the International Conference
on Extending Database Technology, pages 463–473
|
|
4 |
Caputo, A., Basile, P., & Semeraro, G. (2009). Boosting a Semantic Search Engine by
Named Entities. In Foundations of Intelligent Systems, pages 241–250
|
|
5 |
de Andrade, C. M., Belém, F. M., Cunha, W., França, C., Viegas, F., Rocha, L., & Gonçal-
ves, M. A. (2023). On the class separability of contextual embeddings representations
– or “the classifier does not matter when the (text) representation is so good!”. Infor-
mation Processing & Management, 60(4):103336
|
|
6 |
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of the 2019
Conference of the of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 4171–4186
|
|
7 |
Eberts, M. & Ulges, A. (2020). Span-based Joint Entity and Relation Extraction with
Transformer Pre-training. In Proceedings of the 24th European Conference on Artifi-
cial Intelligence, pages 2006–2013
|
|
8 |
Eberts, M. & Ulges, A. (2021). An End-to-end Model for Entity-level Relation Extraction
using Multi-instance Learning. In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics, pages 3650–3660
|
|
9 |
Fabbri, A. R., Kryscinski, W., McCann, B., Xiong, C., Socher, R., & Radev, D. R. (2021).
Summeval: Re-evaluating summarization evaluation. Transactions of the Association
for Computational Linguistics, 9:391–409.
|
|
10 |
Finkel, J. R., Grenager, T., & Manning, C. (2005). Non-local Information into Information
Extraction Systems by Gibbs Sampling. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, pages 363–370
|
|
11 |
Fu, J., Huang, X., & Liu, P. (2021). SpanNER: Named Entity Re-/Recognition as Span
Prediction. In Annual Meeting of the Association for Computational Linguistics, pages
7183–7195.
|
|
12 |
Ji, B., Yu, J., Li, S., Ma, J., Wu, Q., Tan, Y., & Liu, H. (2020). Span-based Joint Entity and
Relation Extraction with Attention-based Span-specific and Contextual Semantic Re-
presentations. In Proceedings of the 28th International Conference on Computational
Linguistics, pages 88–99
|
|
13 |
Liu, C., Fan, H., & Liu, J. (2021). Span-Based Nested Named Entity Recognition with
Pretrained Language Model. In Jensen, C. S., Lim, E.-P., Yang, D.-N., Lee, W.-C.,
Tseng, V. S., Kalogeraki, V., Huang, J.-W., & Shen, C.-Y., editors, In Processing of the
26th International Conference Database Systems for Advanced Applications, pages
620–628.
|
|
14 |
Luo, X., Xue, Y., Xing, Z., & Sun, J. (2022). PRCBERT: Prompt Learning for Require-
ment Classification using BERT-based Pretrained Language Models. In Proceedings
of the 37th IEEE/ACM International Conference on Automated Software Engineering,
pages 1–13
|
|
15 |
Mangaravite, V., Carvalho, M., Cantelli, L., Ponce, L. M., Campoi, B., Nunes, G., La-
ender, A. H. F., & Gonçalves, M. A. (2022). DedupeGov: Uma Plataforma para In-
tegração de Grandes Volumes de Dados de Pessoas Físicas e Jurídicas em Âmbito
Governamental. In Anais do XXXVII Simpósio Brasileiro de Bancos de Dados, pages
90–102
|
|
16 |
Niu, F., Zhang, C., Ré, C., & Shavlik, J. W. (2012). DeepDive: Web-scale Knowledge-
base Construction using Statistical Learning and Inference. In Proceedings of the Se-
cond International Workshop on Searching and Integrating New Web Data Sources,
Istanbul, Turkey, August 31, 2012, pages 25–28
|
|
17 |
Patil, N., Patil, A., & Pawar, B. (2020). Named entity recognition using conditional
random fields. Procedia Computer Science, 167:1181–1188. International Conference
on Computational Intelligence and Data Science.
|
|
18 |
Silva, L., Canalle, G. K., Salgado, A. C., Lóscio, B., & Moro, M. (2019). Uma Aná-
lise Experimental do Impacto da Seleção de Atributos em Processos de Resolução de
Entidades. In Anais do XXXIV Simpósio Brasileiro de Banco de Dados, pages 37–48.
|
|
19 |
Silva, R. M., Gomes, G. C. M., Alvim, M. S., & Gonçalves, M. A. (2022). How to build
high quality L2R training data: Unsupervised compression-based selective sampling
for learning to rank. Information Sciences, 601:90–113.
|
|
20 |
Tang, R., Han, X., Jiang, X., & Hu, X. (2023). Does synthetic data generation of llms
help clinical text mining? Computer Science Archive, abs/2303.04360
|
|
21 |
Wang, S., Sun, X., Li, X., Ouyang, R., Wu, F., Zhang, T., Li, J., & Wang, G. (2023).
GPT-NER: Named Entity Recognition via Large Language Models. Computer Science
Archive, abs/2304.10428
|
|
22 |
Ye, F., Huang, L., Liang, S., & Chi, K. (2023). Decomposed Two-Stage Prompt Learning
for Few-Shot Named Entity Recognition. Information, 14(5).
|
|
23 |
Zhu, Y., Ye, Y., Li, M., Zhang, J., & Wu, O. (2023). Investigating annotation noise for
named entity recognition. Neural Comput. Appl., 35(1):993–1007.
|
|